Ик пассивные. Инфракрасные охранные извещатели Разница между активными и пассивными инфракрасными датчиками

В настоящее время пассивные оптико-электронные инфракрасные (ИК) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания зачастую обеспечивают им приоритет по сравнению с другими средствами обнаружения.

Пассивные оптико-электронные инфракрасные (ИК) извещатели (их часто называют датчиками движения) обнаруживают факт проникновения человека в защищаемую (контролируемую) часть пространства, формируют сигнал тревожного извещения и путем размыкания контактов исполнительного реле (реле ПЦН) передают сигнал “тревога” на средства оповещения. В качестве средств оповещения могут использоваться устройства оконечные (УО) систем передачи извещений (СПИ) или прибор приемно-контрольный охранно-пожарный (ППКОП). В свою очередь, вышеназванные устройства (УО или ППКОП) по различным каналам передачи данных транслируют полученное тревожное извещение на пульт централизованного наблюдения (ПЦН) или местный пульт охраны.

Принцип работы пассивных оптико-электронных ИК-извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Инфракрасное излучение - это тепло, которое излучается всеми нагретыми телами. В пассивных оптико-электронных ИК-извещателях инфракрасное излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе, расположенном на оптической оси линзы (рис. 1).

Пассивные ИК-извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения (рис. 1)1.

Для того чтобы нарушитель был обнаружен ИК-пассивным датчиком, необходимо выполнение следующих условий:

    . нарушитель должен пересечь в поперечном направлении луч зоны чувствительности датчика;
    . движение нарушителя должно происходить в определенном интервале скоростей;
    . чувствительность датчика должна быть достаточной для регистрации разницы температур поверхности тела нарушителя (с учетом влияния его одежды) и фона (стены, пол).

ИК-пассивные датчики состоят из трех основных элементов:

    . оптической системы, формирующей диаграмму направленности датчика и определяющей форму и вид пространственной зоны чувствительности;
    . пироприемника, регистрирующего тепловое излучение человека;
    . блока обработки сигналов пироприемника, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех естественного и искусственного происхождения.

В зависимости от исполнения линзы Френеля пассивные оптико-электронные ИК-извещатели обладают различными геометрическими размерами контролируемого пространства и могут быть как с объемной зоной обнаружения, так и с поверхностной или линейной. Дальность действия таких извещателей лежит в диапазоне от 5 до 20 м. Внешний вид этих извещателей представлен на рис. 2.

Оптическая система

Современные ИК-датчики характеризуются большим разнообразием возможных форм диаграмм направленности. Зона чувствительности ИК-датчиков представляет собой набор лучей различной конфигурации, расходящихся от датчика по радиальным направлениям в одной или нескольких плоскостях. В связи с тем, что в ИК-детекторах используются сдвоенные пироприемники, каждый луч в горизонтальной плоскости расщепляется на два:

Зона чувствительности детектора может иметь вид:

    . одного или нескольких, сосредоточенных в малом угле, узких лучей;
    . нескольких узких лучей в вертикальной плоскости (лучевой барьер);
    . одного широкого в вертикальной плоскости луча (сплошной занавес) или в виде многовеерного занавеса;
    . нескольких узких лучей в горизонтальной или наклонной плоскости (поверхностная одноярусная зона);
    . нескольких узких лучей в нескольких наклонных плоскостях (объемная многоярусная зона).
    . При этом возможно изменение в широком диапазоне протяженности зоны чувствительности (от 1 м до 50 м), угла обзора (от 30° до 180°, для потолочных датчиков 360°), угла наклона каждого луча (от 0° до 90°), количества лучей (от 1 до нескольких десятков).

Многообразие и сложная конфигурация форм зоны чувствительности обусловлены в первую очередь следующими факторами:

    . стремлением разработчиков обеспечить универсальность при оборудовании различных по конфигурации помещений - небольшие комнаты, длинные коридоры, формирование зоны чувствительности специальной формы, например с зоной нечувствительности (аллеей) для домашних животных вблизи пола и т.п.;
    . необходимостью обеспечения равномерной по охраняемому объему чувствительности ИК детектора.

На требовании равномерной чувствительности целесообразно остановиться подробнее. Сигнал на выходе пироприемника при прочих равных условиях тем больше, чем больше степень перекрытия нарушителем зоны чувствительности детектора и чем меньше ширина луча и расстояние до детектора. Для обнаружения нарушителя на большом (10…20 м) расстоянии желательно, чтобы в вертикальной плоскости ширина луча не превышала 5°…10°, в этом случае человек практически полностью перекрывает луч, что обеспечивает максимальную чувствительность. На меньших расстояниях чувствительность детектора в этом луче существенно возрастает, что может привести к ложным срабатываниям, например, от мелких животных. Для уменьшения неравномерной чувствительности используются оптические системы, формирующие несколько наклонных лучей, ИК детектор при этом устанавливается на высоте выше человеческого роста. Общая длина зоны чувствительности тем самым разделяется на несколько зон, причем “ближние” к детектору лучи для снижения чувствительности делаются обычно более широкими. За счет этого обеспечивается практически постоянная чувствительность по расстоянию, что с одной стороны способствует уменьшению ложных срабатываний, а с другой стороны повышает обнаружительную способность за счет устранения мертвых зон вблизи детектора.

При построении оптических систем ИК-датчиков могут использоваться:

    . линзы Френеля - фасеточные (сегментированные) линзы, представляющие собой пластиковую пластину с отштампованными на ней несколькими призматическими линзами-сегментами;
    . зеркальная оптика - в датчике устанавливается несколько зеркал специальной формы, фокусирующих тепловое излучение на пироприемник;
    . комбинированная оптика, использующая и зеркала, и линзы Френеля.
    . В большинстве ИК-пассивных датчиков используются линзы Френеля. К достоинствам линз Френеля относятся:
    . простота конструкции детектора на их основе;
    . низкая цена;
    . возможность использования одного датчика в различных приложениях при использовании сменных линз.

Обычно каждый сегмент линзы Френеля формирует свой луч диаграммы направленности. Использование современных технологий изготовления линз позволяет обеспечить практически постоянную чувствительность детектора по всем лучам за счет подбора и оптимизации параметров каждой линзы-сегмента: площади сегмента, угла наклона и расстояния до пироприемника, прозрачности, отражающей способности, степени дефокусировки. В последнее время освоена технология изготовления линз Френеля со сложной точной геометрией, что дает 30% увеличение собираемой энергии по сравнению со стандартными линзами и соответственно увеличение уровня полезного сигнала от человека на больших расстояниях. Материал, из которого изготавливаются современные линзы, обеспечивает защиту пироприемника от белого света. К неудовлетворительной работе ИК-датчика могут привести такие эффекты, как тепловые потоки, являющиеся результатом нагревания электрических компонентов датчика, попадание насекомых на чувствительные пироприемники, возможные переотражения инфракрасного излучения от внутренних частей детектора. Для устранения этих эффектов в ИК-датчиках последнего поколения применяется специальная герметичная камера между линзой и пироприемником (герметичная оптика), например в новых ИК-датчиках фирм PYRONIX и C&K. По оценкам специалистов, современные высокотехнологичные линзы Френеля по своим оптическим характеристикам практически не уступают зеркальной оптике.

Зеркальная оптика как единственный элемент оптической системы применяется достаточно редко. ИК-датчики с зеркальной оптикой выпускаются, например, фирмами SENTROL и ARITECH. Преимуществами зеркальной оптики являются возможность более точной фокусировки и, как следствие, увеличение чувствительности, что позволяет обнаруживать нарушителя на больших расстояниях. Использование нескольких зеркал специальной формы, в том числе многосегментных, позволяет обеспечить практически постоянную чувствительность по расстоянию, причем эта чувствительность на дальних расстояниях приблизительно на 60% выше, чем для простых линз Френеля. С помощью зеркальной оптики проще обеспечивается защита ближней зоны, расположенной непосредственно под местом установки датчика (так называемая антисаботажная зона). По аналогии со сменными линзами Френеля, ИК-датчики с зеркальной оптикой комплектуются сменными отстегивающимися зеркальными масками, применение которых позволяет выбирать требуемую форму зоны чувствительности и дает возможность адаптировать датчик к различным конфигурациям защищаемого помещения.

В современных высококачественных ИК-детекторах используется комбинация линз Френеля и зеркальной оптики. При этом линзы Френеля используются для формирования зоны чувствительности на средних расстояниях, а зеркальная оптика - для формирования антисаботажной зоны под датчиком и для обеспечения очень большого расстояния обнаружения.

Пироприемник:

Оптическая система фокусирует ИК излучение на пироприемнике, в качестве которого в ИК-датчиках используется сверхчувствительный полупроводниковый пироэлектрический преобразователь, способный зарегистрировать разницу в несколько десятых градуса между температурой тела человека и фона. Изменение температуры преобразуется в электрический сигнал, который после соответствующей обработки вызывает сигнал тревоги. В ИК-датчиках обычно используются сдвоенные (дифференциальные, DUAL) пироэлементы. Это связано с тем, что одиночный пироэлемент одинаковым образом реагирует на любое изменение температуры независимо от того, чем оно вызвано - человеческим телом или, например, обогревом помещения, что приводит к повышению частоты ложных срабатываний. В дифференциальной схеме производится вычитание сигнала одного пироэлемента из другого, что позволяет существенно подавить помехи, связанные с изменением температуры фона, а также заметно снизить влияние световых и электромагнитных помех. Сигнал от движущегося человека возникает на выходе сдвоенного пироэлемента только при пересечении человеком луча зоны чувствительности и представляет собой почти симметричный двухполярный сигнал, близкий по форме к периоду синусоиды. Сам луч для сдвоенного пироэлемента по этой причине расщепляется в горизонтальной плоскости на два. В последних моделях ИК-датчиков с целью дополнительного снижения частоты ложных срабатываний используются счетверенные пироэлементы (QUAD или DOUBLE DUAL) - это два сдвоенных пироприемника, расположенные в одном датчике (обычно размещаются один над другим). Радиусы наблюдения этих пироприемников делаются различными, и поэтому локальный тепловой источник ложных срабатываний не будет наблюдаться в обоих пироприемниках одновременно. При этом геометрия размещения пироприемников и схема их включения выбирается таким образом, чтобы сигналы от человека были противоположной полярности, а электромагнитные помехи вызывали сигналы в двух каналах одинаковой полярности, что приводит к подавлению и этого типа помех. Для счетверенных пироэлементов каждый луч расщепляется на четыре (см. рис.2), в связи с чем максимальное расстояние обнаружения при использовании одинаковой оптики уменьшается приблизительно вдвое, так как для надежного обнаружения человек должен своим ростом перекрывать оба луча от двух пироприемников. Повысить расстояние обнаружения для счетверенных пироэлементов позволяет использование прецизионной оптики, формирующей более узкий луч. Другой путь, позволяющий в некоторой степени исправить это положение - применение пироэлементов со сложной переплетенной геометрией, что использует в своих датчиках фирма PARADOX.

Блок обработки сигналов

Блок обработки сигналов пироприемника должен обеспечивать надежное распознавание полезного сигнала от движущегося человека на фоне помех. Для ИК-датчиков основными видами и источниками помех, могущими вызвать ложное срабатывание, являются:

    . источники тепла, климатизационные и холодильные установки;
    . конвенционное движение воздуха;
    . солнечная радиация и искусственные источники света;
    . электромагнитные и радиопомехи (транспорт с электродвигателями, электросварка, линии электропередачи, мощные радиопередатчики, электростатические разряды);
    . сотрясения и вибрации;
    . термическое напряжение линз;
    . насекомые и мелкие животные.

Выделение блоком обработки полезного сигнала на фоне помех основано на анализе параметров сигнала на выходе пироприемника. Такими параметрами являются величина сигнала, его форма и длительность. Сигнал от человека, пересекающего луч зоны чувствительности ИК-датчика, представляет собой почти симметричный двухполярный сигнал, длительность которого зависит от скорости перемещения нарушителя, расстояния до датчика, ширины луча, и может составлять приблизительно 0,02…10 с при регистрируемом диапазоне скоростей перемещения 0,1…7 м/с. Помеховые сигналы в большинстве своем являются несимметричными или имеющими отличную от полезных сигналов длительность (см. рис. 3). Изображенные на рисунке сигналы носят очень приблизительный характер, в реальности все значительно сложнее.

Основным параметром, анализируемым всеми датчиками, является величина сигнала. В простейших датчиках этот регистрируемый параметр является единственным, и его анализ производится путем сравнения сигнала с некоторым порогом, который определяет чувствительность датчика и влияет на частоту ложных тревог. С целью повышения устойчивости к ложным тревогам в простых датчиках используется метод счета импульсов, когда подсчитывается, сколько раз сигнал превысил порог (то есть, по сути, сколько раз нарушитель пересек луч или сколько лучей он пересек). При этом тревога выдается не при первом превышении порога, а только если в течение определенного времени количество превышений становится больше заданной величины (обычно 2…4). Недостатком метода счета импульсов является ухудшение чувствительности, особенное заметное для датчиков с зоной чувствительности типа одиночного занавеса и ей подобной, когда нарушитель может пересечь только один луч. С другой стороны, при счете импульсов возможны ложные срабатывания от повторяющихся помех (например, электромагнитных или вибраций).

В более сложных датчиках блок обработки анализирует двухполярность и симметрию формы сигналов с выхода дифференциального пироприемника. Конкретная реализация такой обработки и используемая для ее обозначения терминология1 у разных фирм-производителей может быть различной. Суть обработки состоит в сравнении сигнала с двумя порогами (положительным и отрицательным) и, в ряде случаев, сравнении величины и длительности сигналов разной полярности. Возможна также комбинация этого метода с раздельным подсчетом превышений положительного и отрицательного порогов.

Анализ длительности сигналов может проводиться как прямым методом измерения времени, в течение которого сигнал превышает некоторый порог, так и в частотной области путем фильтрации сигнала с выхода пироприемника, в том числе с использованием “плавающего” порога, зависящего от диапазона частотного анализа.

Еще одним видом обработки, предназначенным для улучшения характеристик ИК-датчиков, является автоматическая термокомпенсация. В диапазоне температур окружающей среды 25°С…35°С чувствительность пироприемника снижается за счет уменьшения теплового контраста между телом человека и фоном, при дальнейшем повышении температуры чувствительность снова повышается, но “с противоположным знаком”. В так называемых “обычных” схемах термокомпенсации осуществляется измерение температуры, и при ее повышении производится автоматическое увеличение усиления. При “настоящей” или “двухсторонней” компенсации учитывается повышение теплового контраста для температур выше 25°С…35°С. Использование автоматической термокомпенсации обеспечивает почти постоянную чувствительность ИК-датчика в широком диапазоне температур.

Перечисленные виды обработки могут проводиться аналоговыми, цифровыми или комбинированными средствами. В современных ИК-датчиках все шире начинают использоваться методы цифровой обработки с использованием специализированных микроконтроллеров с АЦП и сигнальных процессоров, что позволяет проводить детальную обработку тонкой структуры сигнала для лучшего выделения его на фоне помех. В последнее время появились сообщения о разработке полностью цифровых ИК-датчиков, вообще не использующих аналоговых элементов.
Как известно, вследствие случайного характера полезных и помеховых сигналов наилучшими являются алгоритмы обработки, основанные на теории статистических решений.

Другие элементы защиты ИК-извещателей

В ИК-датчиках, предназначенных для профессионального использования, применяются так называемые схемы антимаскинга. Суть проблемы состоит в том, что обычные ИК-датчик могут быть выведены нарушителем из строя путем предварительного (когда система не поставлена на охрану) заклеивания или закрашивания входного окна датчика. Для борьбы с этим способом обхода ИК-датчиков и используются схемы антимаскинга. Метод основывается на использовании специального канала ИК-излучения, срабатывающего при появлении маски или отражающей преграды на небольшом расстоянии от датчика (от 3 до 30 см). Схема антимаскинга работает непрерывно, пока система снята с охраны. Когда факт маскирования обнаруживается специальным детектором, сигнал об этом подается с датчика на контрольную панель, которая, однако, не выдает сигнала тревоги до тех пор, пока не придет время постановки системы на охрану. Именно в этот момент оператору и будет выдана информация о маскировании. Причем, если это маскирование было случайным (крупное насекомое, появление крупного объекта на некоторое время вблизи датчика и т.п.) и к моменту постановки на сигнализацию самоустранилось, сигнал тревоги не выдается.

Еще одним защитным элементом, которым оборудованы практически все современные ИК-детекторы, является контактный датчик вскрытия, сигнализирующий о попытке открывания или взлома корпуса датчика. Реле датчиков вскрытия и маскирования подключаются к отдельному шлейфу охраны.

Для устранения срабатываний ИК-датчика от мелких животных используются либо специальные линзы с зоной нечувствительности (Pet Alley) от уровня пола до высоты порядка 1 м, либо специальные методы обработки сигналов. Следует учитывать, что специальная обработка сигналов позволяет игнорировать животных только в том случае, если их общий вес не превышает 7…15 кг, и они могут приблизиться к датчику не ближе 2 м. Так что если в охраняемом помещении прыгучая кошка, то такая защита не поможет.

Для защиты от электромагнитных и радиопомех используется плотный поверхностный монтаж и металлическое экранирование.

Монтаж извещателей

Пассивные оптико-электронные ИК-извещатели имеют одно замечательное преимущество по сравнению с другими типами средств обнаружения. Это простота монтажа, настройки и технического обслуживания. Извещатели данного типа могут устанавливаться как на плоской поверхности несущей стены, так и в углу помещения. Существуют извещатели, которые размещаются на потолке.

Грамотный выбор и тактически верное применение таких извещателей являются залогом надежной работы устройства, да и всей системы охраны в целом!

При выборе типов и количества датчиков для обеспечения охраны конкретного объекта следует учитывать возможные пути и способы проникновения нарушителя, требуемый уровень надежности обнаружения; расходы на приобретение, монтаж и эксплуатацию датчиков; особенности объекта; тактико-технические характеристики датчиков. Особенностью ИК-пассивных датчиков является их универсальность - с их использованием возможно блокирование от подхода и проникновения самых разнообразных помещений, конструкций и предметов: окон, витрин, прилавков, дверей, стен, перекрытий, перегородок, сейфов и отдельных предметов, коридоров, объемов помещений. При этом в ряде случаев не потребуется большого количества датчиков для защиты каждой конструкции - может оказаться достаточным применения одного или нескольких датчиков с нужной конфигурацией зоны чувствительности. Остановимся на рассмотрении некоторых особенностей применения ИК-датчиков.

Общий принцип использования ИК-датчиков - лучи зоны чувствительности должны быть перпендикулярны предполагаемому направлению движения нарушителя. Место установки датчика следует выбирать так, чтобы минимизировать мертвые зоны, вызванные наличием в охраняемом помещении крупных предметов, перекрывающих лучи (например, мебель, комнатные растения). Если в помещении двери открываются внутрь, следует учитывать возможность маскировки нарушителя открытыми дверьми. При невозможности устранить мертвые зоны следует использовать несколько датчиков. При блокировке отдельных предметов датчик или датчики нужно устанавливать так, чтобы лучи зоны чувствительности блокировали все возможные подходы к защищаемым предметам.

Должен соблюдаться задаваемый в документации диапазон допустимых высот подвески (минимальная и максимальная высоты). В особенности это относится к диаграммам направленности с наклонными лучами: если высота подвески будет превышать максимально допустимую, то это приведет к уменьшению сигнала из дальней зоны и увеличению мертвой зоны перед датчиком, если же высота подвески будет меньше минимально допустимой, то это приведет к уменьшению дальности обнаружения с одновременным уменьшением мертвой зоны под датчиком.

1. Извещатели с объемной зоной обнаружения (рис. 3, а,б), как правило, устанавливаются в углу помещения на высоте 2,2-2,5 м. В этом случае они равномерно охватывают объем защищаемого помещения.

2. Размещение извещателей на потолке предпочтительнее в помещениях с высокими потолками от 2,4 до 3,6 м. Данные извещатели имеют более плотную зону обнаружения (рис. 3, в), а на их работу в меньшей степени влияют имеющиеся предметы мебели.

3. Извещатели с поверхностной зоной обнаружения (рис. 4) применяются для охраны периметра, например некапитальных стен, дверных или оконных проемов, а также могут использоваться для ограничения подхода к каким-либо ценностям. Зона обнаружения таких устройств должна быть направлена, как вариант, вдоль стены с проемами. Некоторые извещатели могут устанавливаться непосредственно над проемом.

4. Извещатели с линейной зоной обнаружения (рис. 5) применяются для охраны длинных и узких коридоров.

Помехи и ложные срабатывания

При использовании пассивных оптико-электронных ИК-извещателей необходимо иметь в виду возможность ложных срабатываний, которые происходят из-за помех различного типа.

К ложным срабатываниям ИК-датчиков могут привести помехи теплового, светового, электромагнитного, вибрационного характера. Несмотря на то, что современные ИК-датчики имеют высокую степень защиты от указанных воздействий, все же целесообразно придерживаться следующих рекомендаций:

    . для защиты от потоков воздуха и пыли не рекомендуется размещать датчик в непосредственной близости от источников воздушных потоков (вентиляция, открытое окно);
    . следует избегать прямого попадания на датчик солнечных лучей и яркого света; при выборе места установки должна учитывается возможность засветки в течение непродолжительного времени рано утром или на закате, когда солнце низко над горизонтом, или засветки фарами проезжающего снаружи транспорта;
    . на время постановки на охрану целесообразно отключать возможные источники мощных электромагнитных помех, в частности источники света не на основе ламп накаливания: люминесцентные, неоновые, ртутные, натриевые лампы;
    . для снижения влияния вибраций целесообразно устанавливать датчик на капитальных или несущих конструкциях;
    . не рекомендуется направлять датчик на источники тепла (радиатор, печь) и колеблющиеся предметы (растения, шторы), в сторону нахождения домашних животных.

Тепловые помехи - обусловлены нагреванием температурного фона при воздействии на него солнечного излучения, конвективных потоков воздуха от работы радиаторов систем отопления, кондиционеров, сквозняков.
Электромагнитные помехи - вызываются наводками от источников электро- и радиоизлучений на отдельные элементы электронной части извещателя.
Посторонние помехи - связаны с перемещением в зоне обнаружения извещателя мелких животных (собаки, кошки, птицы). Рассмотрим более детально все факторы, влияющие на нормальную работоспособность пассивных оптико-электронных ИК-извещателей.

Тепловые помехи

Это наиболее опасный фактор, который характеризуется изменением температурного фона окружающей среды. Воздействие солнечного излучения вызывает локальное повышение температуры отдельных участков стен помещения.

Конвективные помехи обусловлены воздействием перемещающихся потоков воздуха, например от сквозняков при открытой форточке, щелей в оконных проемах, а также при работе бытовых отопительных приборов - радиаторов и кондиционеров.

Электромагнитные помехи

Возникают при включении любых источников электро- и радиоизлучения, таких как измерительная и бытовая аппаратура, освещение, электродвигатели, радиопередающие устройства. Сильные помехи могут создаваться и от разрядов молний.

Посторонние помехи

Своеобразным источником помех в пассивных оптико-электронных ИК-извещателях могут являться мелкие насекомые, такие как тараканы, мухи, осы. В случае их перемещения непосредственно по линзе Френеля может возникнуть ложное срабатывание извещателя данного типа. Опасность представляют и так называемые домашние муравьи, которые могут попасть внутрь извещателя и ползать непосредственно по пироэлементу.

Ошибки монтажа

Особое место в некорректной или неправильной работе пассивных оптико-электронных ИК-извещателей занимают ошибки монтажа при выполнении работ по установке данных типов устройств. Обратим внимание на яркие примеры неправильного размещения ИК-извещателей, чтобы избежать подобного на практике.

На рис. 6 а; 7 а и 8 а отображена правильная, корректная установка извещателей. Устанавливать их нужно только так и никак иначе!

На рисунках 6 б, в; 7 б, в и 8 б, в представлены варианты неправильной установки пассивных оптико-электронных ИК-извещателей. При такой установке возможны пропуски реальных вторжений в охраняемые помещения без выдачи сигнала “Тревога”.

Не устанавливать пассивные оптико-электронные извещатели таким образом, чтобы на них попадали прямые или отраженные лучи солнечного света, а также свет фар проезжающих автотранспортных средств.
Не направлять зону обнаружения извещателя на нагревательные элементы систем отопления и кондиционирования помещения, на шторы и гардины, которые могут колебаться от сквозняков.
Не располагать пассивные оптико-электронные извещатели вблизи источников электромагнитного излучения.
Уплотнять все отверстия пассивного оптико-электронного ИК-извещателя герметиком из комплекта изделия.
Уничтожать насекомых, которые присутствуют в охраняемом помещении.

В настоящее время имеется огромное разнообразие средств обнаружения, отличающихся принципом действия, областью применения, конструкцией и эксплуатационными характеристиками.

Правильный выбор пассивного оптико-электронного ИК-извещателя и места его установки - залог надежной работы системы охранной сигнализации.

При написании статьи использованы в том числе материалы из журнала “Системы безопасности” №4, 2013

Тарас Каленюк

Время на чтение: 4 минуты

А А

Приборы, распознающие активность в области своего действия применяются повсеместно и в различных сферах.

Это может быть составляющая охранной сигнализации, что позволяет при проникновении нарушителей активировать сигнал тревоги или послать запрос в охранную компанию. Кроме того, подобный прибор при должном оснащении может отправлять сообщение на телефон хозяина территории.

Инфракрасный датчик движения в разобранном виде

Помимо этого, детекторами перемещения могут снабжаться видеокамеры, что позволяет им более оптимально расходовать свой рабочий ресурс.

Часто применяются такие приборы в освещении. Снабдив лампы в подъездах подобными приборами, можно здорово сэкономить. По сути, постоянное освещение в таких местах не нужно, так как там люди не находятся постоянно, а просто периодически проходят. Так вот - если свет на лестничной клетке не будет гореть постоянно, зажигаясь лишь в нужное время - это существенно сократить затраты на электроэнергию.

Классификация устройств по различным признакам:

  • активные. Работа этих приборов основывается на передаче в пространство вокруг определенного типа сигналов, которые затем возвращаются к прибору, подвергаются анализу и на его основании делается вывод о наличии или отсутствии активности в данной зоне;
  • пассивные. Данные анализаторы только принимают данные, ничего не транслируя в окружающую среду. Это делает их самыми безопасными из все датчиков движения;
  • ИК-устройства относятся к пассивным датчикам, так как только принимают информацию. Подробнее о них будет рассказано чуть ниже;
  • УЗ-детекторы являются активными, так как посылают вокруг себя ультразвуковые волны, отслеживая с их помощью перемещение какого-то объекта. Данный прибор может обнаруживать движение даже холодных предметов, анализируя изменение характера звуковых волн, отражающихся от движущейся цели. Звуковые волны абсолютно безвредны для людей, но весьма болезненно воспринимаются животными, которые могут их слышать, в отличии от нас. По этой причине не рекомендуется использовать датчики такого типа в домах, где есть домашние питомцы, дабы не причинять им неудобства. Помимо этого, есть возможность провести ультразвуковой детектор, двигаясь очень плавно и неторопливо, так как он реагирует лишь на довольно резкие движения. Но он стоит относительно недорого и для бытовых целей вполне неплох (в том случае, если в доме не живет какая-нибудь кошка). Набором похожих функция, за вычетом недостатков, обладает прибор следующего вида;
  • СВЧ или микроволновый датчик. Чем он лучше предыдущего? Принцип работы у него такой же, отличается лишь характер транслируемого сигнала - микроволны - которые являются гораздо более чувствительными, нежели ультразвук. Датчики такого типа способны опознать даже самую незначительную активность, а кроме того - СВЧ-сигнал способен пройти даже сквозь препятствия - двери, окна, тонкие стены. Минусом может стать ложное срабатывание из-за высокой чувствительности детектора, но это должна легко исправлять регулировка настроек прибора. Кроме этого, других недостатков у него нет. Даже СВЧ-излучение, которого многие так боятся, транслируется датчиком в таких незначительных количествах, что просто неспособно причинить какой бы то ни было вред живым существам;

Как работает СВЧ датчик?

  • мультисенсорные или комбинированные анализаторы. Обладают несколькими чувствительными элементами в одной системе (например, ИК и УЗ), что позволяет им с наиболее хорошо отслеживать активность, а также страхует от ложных срабатываний, так как детектор не передает сигнал действия до тех пор, пока не получит подтверждение от каждого датчика;
  • охранные детекторы применяются с целью обнаружения незаконного вторжения на охраняемую территорию. При распознавании активности в поле своего зрения, данный прибор активирует сигнал тревоги на местности, либо посылает уведомление владельцу или охране;
  • бытовые предназначены, в основном, для включения освещения в тот момент, когда в область действия датчика попадает человек;
  • проводные устройства передают данные и получают питание по системе проводов. Если нет возможности протянуть кабели или того требует задумка владельцев, можно прибегнуть к использованию датчиков следующих двух типов;
  • беспроводные детекторы используют для передачи данных, как понятно из названия, беспроводные способы связи. Это может быть GSM, Wi-Fi или радиосвязь. Удобно тем, что вокруг прибора отсутствуют провода, которые могут привлекать к нему внимание, а также преимуществом является скорость передачи данных, которая в данном случае на порядок выше той, которая обеспечивается проводной связью. Но и недостатки у такого вида детекторов присутствуют - они весьма чувствительны к электромагнитным помехам, могут сбоить, если на пути сигнала имеются препятствия, а также в случае неблагоприятных погодных условий. Помимо этого, при передаче данных по сотовой сети, оператор может взимать плату за трафик;
  • автономные детекторы получают питание от внутренних источников, а не от сети, что является неоспоримым преимуществом в случае использования его в быту, так как сбои в подаче электроэнергии могут обесточить систему, а применение в квартирах резервных генераторов на случай такого сбоя не особенно распространено. Если возникают проблемы с тем, как подключить прибор, беспроводные и автономные устройства способны здорово облегчить процесс монтажа;
  • двухканальные датчики работают с лампами накаливания и являются наиболее простым типом устройств;
  • трехканальные допускают подключение любого типа осветительного прибора.

Данное устройство также известно под названием пироэлектрического (PIR или ПИР)

Принцип работы ИК-устройства основан на улавливании движения при помощи специальных линз. Их, в зависимости от модели, может быть разное количество (20-60). Чем больше линз находится в приборе, тем точнее и лучше он будет работать. Но такое устройство и стоит подороже.

Достоинства:

Основной целью использования данного прибора в быту является включение освещения. Это может быть полезным в двух случаях:

  1. основным назначением датчика является включение света в тот момент, когда в область действия прибора попадает человек;
  2. также этот детектор в тандеме с осветительным прибором может применяться в охранно-профилактических целях. Если хозяева уезжают в отпуск, программа детектора периодически активирует лампы возле дома, или в гараже, чтобы создать видимость того, что там кто-то есть.

Способы, которыми можно производить подсоединение ИК-прибора, отличаются, в зависимости от целей установки прибора.

Схема подключения инфракрасного датчика движения бывает трех видов:

  • параллельная. Данный способ позволяет управлять освещением как при помощи выключателя, так и детектором, срабатывание которого не зависит от положения переключателя;
  • последовательная. Этот тип подразумевает возможность включения ламп только в том случае, когда выключатель находится в положении «вкл»;
  • комбинированная схема подключения может иметь в одной системе оба способа активации света. Применяется в том случае, когда на одной линии расположены два или более датчика. Данный способ позволяет часть приборов сделать зависимым от выключателя, а часть нет.

На какие параметры стоит обращать внимание, когда необходимо выбрать пассивный инфракрасный датчик движения:

  1. способ питания устройства, что особенно актуально, если подключение при помощи провода невозможно;
  2. таймер задержки отключения - позволяет настроить время, спустя которое прибор отключит свет после того, как люди покинут помещение. В некоторых моделях может достигать десяти минут;
  3. светочувствительность. Так же, как и предыдущий параметр, настраивается самим пользователем. Определяет то, при какой интенсивности освещения будет происходить подключение ламп. Например, при минимальной установке Люкс, датчик включит свет только ночью. Чем выше показатель, тем при более светлом времени суток прибор будет активировать освещение. В зависимости от модели, настройка данного параметра производится при помощи переключателя с несколькими положениями, либо регулятором с более плавным изменением параметра. Второй вариант, естественно лучше, но и дороже;
  4. радиус действия и угол обзора;
  5. скорость реакции. Если объект будет двигаться слишком медленно - прибор не распознает его температуру. Если слишком быстро - попросту не успеет отреагировать;
  6. степень защиты корпуса от влаги и пыли. Даже в комнатах может быть достаточно сыро и пыльно, и это стоит учесть, когда стоит вопрос - какой датчик движения предпочесть.

Как подключить датчик движения своими руками

В первую очередь необходимо определиться с местом установки. Тут стоит учесть, что не всякое помещение подходит для использования такой системы.

Можно, конечно, оснастить каждую комнату дома датчиками, это удобно, да. Но не практично.

Необходимо учитывать некоторые нюансы при выборе места, куда будет установлено устройство:

  • в поле зрения датчика не должны попадать посторонние объекты - перегородки, мебель, стекло;
  • на чувствительный элемент детектора не должен падать прямой свет;
  • вблизи датчика не должно находиться источников тепла - труб с горячей водой, каминов, печей;
  • следует ограничить количество приборов, способных создать электромагнитные помехи в том помещении, где планируется подключение ИК-датчика.

Среди большого многообразия охранных извещателей, инфракрасный датчик движения является самым распространенным устройством. Доступная цена и эффективность, вот качества, обеспечившие им популярность. А все благодаря тому, что в начале девятнадцатого века обнаружили инфракрасное излучение.

Оно находится за границей видимого красного света в диапазоне 0,74-2000 мкм. Оптические свойства веществ сильно различаются и зависят от типа облучения. Небольшой слой воды является непрозрачным для ИК излучения. Инфракрасное излучение солнца составляет 50 процентов всей излучаемой энергии.

Область применения

Инфракрасные датчики движения для охраны применяются давно. Они фиксировали перемещения теплых объектов в помещениях, и передавали сигнал тревоги на контрольную панель. Их стали совмещать с видеокамерами и фотоаппаратами. При нарушении происходила фиксация происшествия. Потом область применения расширилась. Зоологи стали применять в фотоловушках для контроля исследуемых животных.

Больше всего ИК датчики применяются в системе умный дом, где играют роль сенсора присутствия. При попадании теплокровного объекта в область действия устройства, оно включает освещение в помещении или на улице. Экономится электричество и облегчается жизнь людям.

В системах контроля доступа извещатели движения управляют открыванием и закрыванием дверей общественных сооружений. По расчетам экспертов рынок ИК сенсоров будет расти на 20% ежегодно ближайшие 3-5 лет.

Принцип работы ИК датчика движения

Работа ИК извещателя заключается в контроле инфракрасного излучения определенной области, сравнении его с фоновым уровнем, и по результатам анализа выдачи сообщения.

ИК датчики движения для охраны используют активные и пассивные виды сенсоров. Первые для контроля используют собственный передатчик, облучающие все в зоне действия устройства. Приемник получает отраженную часть ИК излучения и по его характеристикам определяет, было нарушение зоны охраны или нет. Активные датчики бывают комбинированного типа, когда принимающие и передающие блоки разделены, это извещатели контролирующие периметр объекта. Имеют большую дальность действия по сравнению с пассивными устройствами.

Пассивный инфракрасный датчик движения не имеет излучателя, он реагирует на изменение окружающего ИК излучения. В общем случае, извещатель имеет два чувствительных элемента, способных фиксировать инфракрасное излучение. Перед сенсорами устанавливается линза Френеля, разбивающая пространство на несколько десятков зон.

Маленькая линза собирает излучение с конкретного участка пространства и посылает на свой чувствительный элемент. Соседняя линза, контролирующая смежный участок посылает поток излучения на второй сенсор. Излучения соседних участков примерно одинаковы. При нарушении баланса, превышении какого-то порогового значения, прибор извещает контрольную панель о нарушении зоны охраны.

Схема ИК датчика

Каждый производитель имеет уникальную принципиальную схему ИК извещателя, но функционально они примерно одинаковы.

ИК датчик имеет оптическую систему, пирочувствительный элемент, блок обработки сигналов.

Оптическая система

Рабочая область современных датчиков движения весьма разнообразна благодаря различным формам оптической системы. От устройства расходятся лучи в радиальном направлении в различных плоскостях.

Так как извещатель имеет сдвоенный сенсор, то все лучи раздваиваются.

Оптическая система ориентируется таким образом, что будет контролировать только одну плоскость или несколько плоскостей на разных уровнях. Может контролировать пространство вкруговую или по лучу.

При построении оптики ИК-датчиков часто используются линзы Френеля, представляющих множество призматических фасеток на выпуклой пластиковой чашке. Каждая линза собирает ИК поток со своего участка пространства и отправляет на ПИР элемент.

Конструкция оптической системы такова, что избирательность по всем линзам одинакова. Чтобы защититься от собственного тепла элементов, насекомых в устройстве устанавливается герметичная камера. Редко используется зеркальная оптика. Это значительно повышает дальность действия устройства и цену прибора.

Пирочувствительный элемент

Роль сенсора в ИК датчике играет пироэлектрический преобразователь на чувствительных полупроводниковых элементах. Он состоит из двух сенсоров. На каждый из них от двух соседних лучей поступает поток излучения. При одинаковом равномерном фоне сенсор молчит. При возникновении дисбаланса, в одной зоне появляется дополнительный источник тепла, а в другой нет, сенсор срабатывает.

Для повышения надежности и уменьшения ложных срабатываний в последнее время стали применять счетверенные ПИР элементы. Это увеличило чувствительность и помехозащищенность прибора. Но уменьшило расстояние уверенного распознавания нарушителя. Для решения этого приходится использовать прецизионную оптику.

Блок обработки сигналов

Главной задачей блока является надежное распознавание человека на фоне помех.

Они бывают самые разнообразные:

  1. солнечное излучение;
  2. искусственные ИК источники;
  3. кондиционеры и холодильники;
  4. животные;
  5. конвекция воздуха;
  6. электромагнитные помехи;
  7. вибрация.

Блок обработки для анализа использует амплитуду, форму и длительность выходного сигнала пироэлектрического преобразователя. Воздействие нарушителя вызывает симметричный двухполярный сигнал. Помехи выдают несимметричные значения на обрабатывающий модуль. В простейшем варианте сравнивается амплитуда сигнала с пороговым значением.

При превышении порога извещатель сообщает об этом, подавая определенный сигнал на контрольную панель. В более сложных датчиках измеряется длительность превышения порога, количество этих превышений. Для повышения помехозащищенности прибора используется автоматическая термокомпенсация. Она обеспечивает постоянную чувствительность во всем диапазоне температур.

Обработка сигнала осуществляется аналоговыми и цифровыми устройствами. В новейших устройствах начали применять цифровые алгоритмы обработки сигнала, что позволило улучшить избирательность прибора.

Эффективность использования ИК извещателя в охранной сигнализации

От правильности выбора вида сенсора, расположения на объекте охраны во многом зависит его эффективность. Пассивные ИК датчики движения уличные и внутреннего применения реагируют на перемещения теплых по сравнению с фоном объектов при определенных скоростях перемещения. При маленькой скорости движения, изменения потоков инфракрасного излучения в соседних секторах настолько незначительны, что он воспринимается, как фоновый дрейф, и не реагирует на нарушение зоны охраны.

Если нарушитель облачится в защитный костюм с отличной теплоизоляцией, то ИК датчик движения не отреагирует, не будет нарушения баланса излучения в соседних зонах. Человек сольется с фоновым излучением.

Нарушитель двигается вдоль лучей извещателя движения с малой скоростью, в этом случае он нередко молчит.

Изменения потоков оказываются недостаточными для срабатывания устройства. Особенно свойственно извещателям с функцией защиты от животных. В них уменьшают чувствительность, чтобы избежать реакции на появления домашних питомцев.

Важно правильно установить инфракрасный датчик. Требуется по конфигурации здания применять устройство типа «шторка», следует так и делать. Производитель рекомендует монтаж прибора на определенной высоте, надо соблюсти и это.

Для повышения эффективности работы инфракрасных датчиков их применяют совместно с сенсорами, работающими на других принципах.

Обычно, дополнительно придается радиоволновой извещатель с высокой чувствительностью, что снижает процент ложных срабатываний и повышает надежность охранной сигнализации. При защите окон от проникновения дополнительно устанавливается ультразвуковой извещатель, реагирующий на разбитие стекла.

Заключение

Постепенно ИК датчики усложняются, повышается их чувствительность, улучшается избирательность. Сенсоры находят широкое распространение в системах «умный дом», видеонаблюдения, контроль доступа. Совместное использование с различными устройствами повысило потребительские свойства датчиков. Им уготована долгая жизнь.

Видео: Датчик движения, принцип работы

– они открывают двери в аэропортах и магазинах когда вы подходите к двери. Они же обнаруживают движение и подают сигнал тревоги в охранной сигнализации. Как они работают: сенсор, чувствительный к инфракрасному излучению в диапазоне 5–15 мкм, обнаруживает тепловое излучение от человеческого тела. Если кто забыл физику, напомню: именно в этот диапазон попадает максимум излучения от тел при температуре 20–40 градусов Цельсия. Чем сильнее нагрет предмет, тем больше он излучает. Для сравнения: инфракрасные прожекторы подсветки видеокамер, лучевые (двухпозиционные) детекторы «пересечения луча» и пульты управления телевизором работают в диапазоне длин волн короче 1 мкм, видимая человеком область спектра находится в районе 0,45–0,65 мкм.
Пассивными датчики такого типа называются, потому что сами они ничего не излучают, только воспринимают тепловое излучение от человеческого тела. Проблема состоит в том, что любой предмет при температуре даже 0º С излучает довольно много в ИК-диапазоне. Хуже того, излучает сам детектор – его корпус и даже материал чувствительного элемента. Поэтому первые такие детекторы работали, если только сам детектор охладить, скажем, до жидкого азота (-196º С). Такие детекторы весьма не практичны в повседневной жизни. Современные массовые детекторы все работают по дифференциальному принципу – они не в состоянии достаточно точно измерить собственно величину потока ИК-излучения от движущегося человека (на фоне паразитных потоков от намного ближе расположенных предметов), но (тоже, на самом деле, на грани чувствительности) способны обнаружить ИЗМЕНЕНИЕ РАЗНОСТИ потоков ИК-излучения, падающих на две соседние площадки. То есть важно, что излучение от человека фокусируется только на одну из площадок, и притом оно изменяется. Наиболее надежно детектор срабатывает, если изображение человека попадет сначала на одну площадку, сигнал от нее станет больше, чем от второй, а затем человек передвинется, так что его изображение попадет теперь на вторую площадку и сигнал у второй вырастет, а у первой упадет. Такие достаточно быстрые изменения разности сигналов вполне можно обнаружить даже на фоне огромного и непостоянного сигнала, вызванного всеми другими окружающими предметами (и особенно солнечным светом).

Как обмануть ИК-детектор
Изначальный недостаток ИК-пассивного метода обнаружения движения: человек должен явно отличаться по температуре от окружающих предметов. При температуре в комнате 36,6º никакой детектор не отличит человека от стен и мебели. Хуже того: чем ближе температура в комнате к 36,6º, тем хуже чувствительность детектора. Большинство современных устройств частично компенсируют этот эффект, повышая усиление при температурах от 30º до 45º (да, детекторы успешно работают и при обратном перепаде – если в комнате +60º, детектор легко обнаружит человека, благодаря системе терморегуляции человеческий организм сохранит температуру около 37º). Так вот при температуре на улице около 36º (что часто встречается в южных странах) детекторы очень плохо открывают двери, либо, наоборот, из-за предельно поднятой чувствительности реагируют на малейшее дуновение ветра.
Более того, от ИК-детектора легко загородиться любым предметом комнатной температуры (листом картона) или надеть толстую шубу и шапку, чтобы не высовывались руки и лицо, и, если ходить достаточно медленно, ИК-детектор не заметит столь маленьких и медленных возмущений.
В интернете ходят и более экзотические рекомендации, типа мощной ИК-лампы, которая, если ее медленно включить (обычным диммером), загонит ИК-детектор в зашкал, после чего перед ним даже без шубы можно ходить. Тут, правда, следует отметить, что хорошие ИК-детекторы в таком случае выдадут сигнал неисправности.
Наконец, наиболее известная проблема ИК-детекторов – маскирование. Когда система снята с охраны, днем в рабочие часы, вы как посетитель приходите в нужное помещение (в магазин, например) и, поймав момент, пока никто не смотрит, загораживаете ИК-детектор бумажкой, заклеиваете непрозрачной самоклеющейся пленкой или заливаете краской из баллончика. Особенно это удобно человеку, который сам там работает. Кладовщик днем аккуратно загородил детектор, ночью влез в окно, все вынес, а потом убрал все и вызвал милицию – ужас, обокрали, а сигнализация не сработала.
Для защиты от такого маскирования существуют следующие технические приемы.
1. В совмещенных (ИК + микроволновый) датчиках есть возможность выдать сигнал неисправности, если микроволновый датчик обнаружил большой отраженный радиосигнал (кто-то подошел очень близко или протянул руку непосредственно к извещателю), а ИК-датчик при этом перестал выдавать сигналы. В большинстве случаев в реальной жизни это означает вовсе не злой умысел преступника, а халатность персонала – например, высокий штабель ящиков загородил извещатель. Впрочем, вне зависимости от злого умысла если извещатель загородили, это непорядок, и такой сигнал «неисправность» очень уместен.
2. В некоторых приборах приемно-контрольных есть алгоритм контроля, когда после снятия извещателя с охраны он обнаруживает движение. То есть отсутствие сигнала считается неисправностью, пока кто-то не пройдет перед датчиком и он не выдаст нормальный сигнал «есть движение». Эта функция не очень удобна, ведь нередко снимают с охраны все помещения, даже те, в которые сегодня никто входить не собирается, а получится, что вечером, чтобы поставить помещения снова на охрану, придется зайти во все комнаты, где никого днем не было, и помахать руками перед датчиками – ППК убедится, что датчики работоспособны, и милостиво разрешит поставить систему на охрану.
3. Наконец, есть функция под названием «ближняя зона», которая однажды была включена в требования отечественного ГОСТа и которую нередко ошибочно называют «антимаскинг». Суть идеи: у извещателя должен быть дополнительный датчик, глядящий прямо вниз, под извещатель, или отдельное зеркало, или специальная хитрая линза, в общем, чтобы не было мертвой зоны внизу. (Большинство извещателей имеют ограниченный угол обзора и в основном смотрят вперед и градусов 60 вниз, так что непосредственно под извещателем есть небольшая мертвая зона, на уровне пола примерно метр от стены.) Считается, что хитрый враг как-то сможет попасть в эту мертвую зону и оттуда загородить (замаскировать) линзу ИК-датчика, а потом уже нагло ходить по всей комнате. В реальности извещатель обычно устанавливают так, что в эту мертвую зону нет никакой возможности попасть, минуя области чувствительности датчика. Ну разве что сквозь стену, но против преступников, проникающих сквозь стену, не помогут дополнительные линзы.

Радиопомехи и прочие помехи
Как я уже говорил, ИК-датчик работает близко к пределу чувствительности, особенно при температуре в помещении, приближающейся к 35º С. Конечно, при этом он весьма подвержен влиянию помех. Большинство ИК-извещателей могут выдать ложную тревогу, если рядом с ними положить сотовый телефон и позвонить на него. На этапе установления связи телефон выдает мощные периодические сигналы с периодом, близким к 1 Гц (именно в этом диапазоне лежат типичные сигналы от человека, идущего перед ИК-датчиком). Несколько ватт радиоизлучения вполне сопоставимы с микроваттами теплового излучения человека.
Помимо радиоизлучения могут быть и оптические помехи, хотя линза ИК-датчика, как правило, непрозрачна в видимом диапазоне, но мощные лампы или 100 Вт автомобильные фары в соседнем спектральном диапазоне опять же вполне могут дать сигнал, сравнимый с микроваттами от человека в нужном диапазоне. Основная надежда при этом на то, что посторонние оптические помехи, как правило, плохо фокусируются и потому одинаково воздействуют на оба чувствительных элемента ИК-датчика, таким образом, извещатель может обнаружить помеху и не выдать ложный сигнал тревоги.

Пути совершенствования ИК-датчиков
Уже лет десять почти все охранные ИК-извещатели содержат достаточно мощный микропроцессор и потому стали менее подвержены воздействию случайных помех. Извещатели могут анализировать повторяемость и характерные параметры сигнала, долговременную стабильность фонового уровня сигнала, что позволило существенно повысить устойчивость к помехам.
ИК-датчики, в принципе, беззащитны против преступников за непрозрачными экранами, зато подвержены влиянию тепловых потоков от климатического оборудования и посторонней засветке (через окно). Микроволновые (радио) датчики движения, наоборот, способны выдавать ложные сигналы, обнаруживая движение за радиопрозрачными стенами, вне защищаемого помещения. Они также более подвержены влиянию радиопомех. Совмещенные ИК + микроволновые извещатели могут использоваться как по схеме «И», что значительно снижает вероятность ложных тревог, так и по схеме «ИЛИ» для особо ответственных помещений, что практически исключает возможность их преодоления.
ИК-датчики не могут отличить маленького человека от большой собаки. Существует ряд датчиков, в которых значительно снижена чувствительность к движениям небольших объектов за счет применения 4-площадочных сенсоров и специальных линз. Сигнал от высокого человека и от низкой собаки в таком случае можно с некоторой вероятностью различить. Надо хорошо понимать, что стопроцентно отличить пригнувшегося подростка от вставшего на задние лапы ротвейлера, в принципе, невозможно. Но тем не менее вероятность ложной тревоги может быть существенно снижена.
Несколько лет назад появились еще более сложные сенсоры – с 64 чувствительными площадками. Фактически это простой тепловизор с матрицей 8 х 8 элементов. Оснащенные мощным процессором, такие ик датчики (обозвать их «извещатель» совсем язык не поворачивается) способны определять размер и расстояние до движущейся теплой цели, скорость и направление ее движения – еще лет 10 назад такие сенсоры считались верхом технологии для самонаводящихся ракет, а теперь применяются для защиты от банальных воров. Видимо, скоро ИК-датчиком мы привыкнем называть небольших роботов, которые разбудят вас ночью словами: «Извините, сэр, но воры, сэр, они хотят чаю. Должен ли я подать им чаю сейчас или попросить подождать, пока вы умоетесь и возьмете ваш револьвер?»

Инфракрасные извещатели являются одними из самых распространенных в системах охранной сигнализации. Объясняется это весьма широким спектром их применения.

Они используются:

  • для контроля внутреннего объема помещений;
  • организации охраны периметров;
  • блокировки различных строительных конструкций "на проход".

Помимо климатического исполнения (уличной и внутренней установки) они также подразделяются по принципу действия. Существует две большие группы: активные и пассивные. Кроме того, инфракрасные извещатели подразделяются по типу зоны обнаружения, а именно:

  • объемные;
  • линейные;
  • поверхностные.

Давайте рассмотрим по порядку для каких целей применяются те или иные их виды.

Пассивные инфракрасные извещатели.

Эти датчики имеют в своем составе линзу, "нарезающую" контролируемую область на отдельные сектора (рис.1). Срабатывание извещателя происходит при обнаружении температурных перепадов между этими зонами. Таким образом, мнение, что такой охранный датчик реагирует чисто на тепло ошибочно.

Если человек, находящийся в зоне обнаружения, будет стоять неподвижно извещатель не сработает. Кроме того, температура объекта, близкая к фоновой также влияет на его чувствительность в сторону уменьшения.

Тоже самое относится к случаям, когда скорость перемещения объекта ниже или выше нормируемой величины. Как правило, это значение лежит в пределах 0,3-3 метра/секунду. Для уверенного обнаружения нарушителя этого вполне достаточно.

Активные инфракрасные извещатели.

Устройства этого типа имеют в своем составе излучатель и приемник. Они могут быть выполнены отдельными блоками или совмещены в одном корпусе. В последнем случае при установке такого охранного прибора дополнительно используется элемент, отражающий ИК лучи.

Активный принцип действия характерен для линейных датчиков, которые срабатывают при пересечении инфракрасного луча. Ниже рассмотрены принципы действия и особенности применения основных типов ИК извещателей.

ОБЪЕМНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Эти устройства являются пассивными (что это такое см.выше) и используются, в основном для контроля внутреннего объема помещений. Диаграмма направленности объемного датчика характеризуется:

  • углом раскрыва в вертикальной и горизонтальной плоскостях;
  • дальностью действия извещателя.

Обратите внимание - дальность действия указывается по центральному лепестку диаграммы, для боковых она будет меньше.

Что характерно для любого инфракрасного датчика, в том числе объемного - любое препятствие для него является непрозрачным, соответственно создает мертвые зоны. С одной стороны - это недостаток, с другой - достоинство, поскольку полностью отсутствует реакция на движущиеся предметы за пределами охраняемого помещения.

Также к недостаткам следует отнести возможность ложного срабатывание от таких факторов как:

  • конвекционные тепловые потоки, например, от систем отопления различного принципа действия;
  • засветки от движущихся источников света - чаще всего автомобильных фар через окно.

Таким образом, при монтаже объемного извещателя эти моменты игнорировать нельзя. По способу установки существует два исполнения "объемников".

Настенные объемные ИК извещатели.

Идеально подходят для офисов, квартир, частных домов. В таких помещениях мебель и другие предметы интерьера располагаются, как правило, вдоль стен, поэтому слепых зон не создают. Если учесть, что горизонтальный угол обзора таких датчиков составляет порядка 90 градусов, то, установив его в углу помещения, одним устройством можно практически полностью заблокировать небольшую комнату.

Потолочные объемные извещатели.

Для таких объектов как магазины или склады характерной особенностью является установка стеллажей или витрин по всей площади помещения. Установка потолочного датчика в таких случаях более эффективна, конечно, если указанные элементы имеют высоту ниже потолка.

В противном случае придется блокировать каждый образовавшийся отсек. Справедливости ради, нужно заметить, что такая необходимость возникает не всегда, но это уже тонкости проектирования сигнализации для каждого конкретного объекта с учетом всех его индивидуальных особенностей.

ЛИНЕЙНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

По своему принципу действия они являются активными и формируют один или несколько лучей, отслеживая их пересечение возможным нарушителем. В отличие от объемных, линейные датчики устойчивы к различного рода воздушным потокам, да и прямая засветка, в большинстве случаев, им не повредит.

Принцип работы линейного однолучевого инфракрасного излучателя поясняется рисунком 2.

Дальность действия активных линейных устройств составляет от десятков до сотен метров. Наиболее характерные варианты их применения:

  • блокировка коридоров;
  • охрана открытых и огороженных периметров территории.

Для охраны периметра используются извещатели, имеющие более одного луча (лучше если их будет не менее трех). Это достаточно очевидно, поскольку снижает вероятность проникновения под или над контрольной зоной.

При установке и настройке инфракрасных линейных извещателей требуется точная юстировка приемника и передатчика для двухблочных устройств или отражателя и комбинированного блока (для одноблочных). Дело в том, что сечение (диаметр) инфракрасного луча сравнительно невелик, поэтому даже небольшое угловое смещение передатчика или приемника приводит к его значительному линейному отклонению в точке приема.

Из сказанного также вытекает необходимость крепления всех элементов таких извещателей на жестких линейных конструкциях, полностью исключающих возможные вибрации.

Должен заметить, что хороший "линейник" - удовольствие достаточно дорогое. Если стоимость однолучевых устройств с небольшой дальностью действия еще лежит в пределах нескольких тысяч рублей, то с увеличением контролируемой дальности и количества ИК лучей цена возрастает до десятков тысяч.

Объясняется это тем, что охранные извещатели такого типа являются достаточно сложными электромеханическими устройствами, содержащими, помимо электроники, высокоточные оптические устройства.

Кстати, пассивные линейные извещатели тоже существуют, но по максимальной дальности действия они ощутимо уступают своим линейным собратьям.

УЛИЧНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Вполне очевидно, что извещатель охранной сигнализации уличного исполнения должен иметь соответствующее климатическое исполнение. Это касается, в первую очередь:

  • диапазона рабочих температур;
  • степени пылевлагозащиты.

По общепринятой существующей классификации класс защиты уличного извещателя должен быть не ниже IP66. По большому счету, для большинства потребителей это не принципиально - вполне достаточно указания "уличный" в описании технических параметров прибора. На температурный же диапазон внимание обратить стоит.

Большего интереса заслуживают особенности применения такого рода устройств и факторы, влияющие на надежность охраны.

По характеру зоны обнаружения инфракрасные охранные извещатели, предназначенные для наружной установки могут быть любого типа (в порядке убывания популярности):

  • линейные;
  • объемные;
  • поверхностные.

Как уже говорилось, уличные линейные извещатели применяются для охраны периметра открытых площадок. Для этих же целей могут использоваться и поверхностные датчики.

Объемные устройства служат для контроля различного рода площадей. Стоит сразу заметить, что по дальности действия они уступают линейным датчикам. Вполне естественно, что цены на уличные извещатели значительно выше, чем на устройства, предназначенные для внутренней установки.

Теперь, что касается практической стороны эксплуатации в системах охранной сигнализации инфракрасных наружных извещателей. Основными факторами, провоцирующими ложные срабатывания установленных на улице охранных датчиков являются:

  • наличие на охраняемом участке различной растительности;
  • перемещение животных и птиц;
  • природные явления в виде дождя, снега, тумана и пр.

Первый момент может показаться непринципиальным, поскольку, на первый взгляд, является статичным и может быть учтен на стадии проектирования. Не стоит, однако, забывать, что деревья, трава и кусты растут и со временем могут стать помехой для нормальной работы охранного оборудования.

Второй фактор производители стараются компенсировать применением соответствующих алгоритмов обработки сигнала и эффект от этого есть. Правда, как не крути, если объект даже с небольшими линейными размерами переместится в непосредственной близости от извещателя, то, скорее всего, будет идентифицирован как нарушитель.

Что касается последнего пункта. Здесь все зависит от изменения оптической плотности среды. Говоря простым языком, сильны дождь, крупный снег или густой туман могут сделать инфракрасный извещатель полностью неработоспособным.

Так что, при принятии решения об использовании в сигнализации уличных охранных извещателей учтите все сказанное. Таким образом вы сможете избавить себя от многих неприятных сюрпризов при эксплуатации наружной охранной системы.

* * *

© 2014 - 2019 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

Понравилось? Лайкни нас на Facebook