Схема просвечивания. Метод просвечивания деталей. Рис.6. Схема просвечивания сварных стыков с Х-образной подготовкой кромок для обнаружения дефектов по скосу кромок

Выбор по производителю

Не выбрано Компьютерная радиография DUERR NDT / DÜRR NDT АКС Синтез НДТ Proceq SA НПЦ Кропус Константа Центр МЕТ Bosello High Technology SaluTron® Messtechnik GmbH ЗИО "ПОЛАРИС" НПП «Промприбор» ЭЛИТЕСТ Промтест Bruker ТОЧПРИБОР FUTURE-TECH CORP. OXFORD Instruments Амкро Ньюком-НДТ Sonotron NDT YXLON International Array Corporation Raycraft General Electric Vidar systems corporation ООО «Арсенал НК» Echo Graphic НПП "Машпроект"

Ренгенографический контроль сварных соединений

24.05.2017

Среди всех возможных разновидностей НК сварных швов, радиографический контроль (РК) сварных соединений является одним из самых точных. Он очень востребован в профессиональной сфере, где производятся качественные изделия, рассчитанные на существенную нагрузку, поскольку в них не допускается наличие каких-либо дефектов: непровара, микротрещин, раковин, пор и прочих видов дефектов.

, 1065.41kb.

  • Данный европейский стандарт был разработан в Комитете cen/tc 138 "Неразрушающий контроль" , 253.39kb.
  • Контроль качества сварных соединений трубопроводов стальных, из полимерных материалов, , 375.15kb.
  • Государственный стандарт союза сср соединения сварные методы контроля качества , 127.6kb.
  • Welded reinforcing products and inserts welded joints of reinforcement and inserts , 1262.53kb.
  • 4. СХЕМЫ ПРОСВЕЧИВАНИЯ СВАРНЫХ СОЕДИНЕНИЙ

    4.1. Кольцевые швы трубопроводов, переходов и трубных узлов (приварки тройников, отводов) просвечивают по одной из четырех схем в зависимости от геометрических размеров труб, типа и активности применяемого источника излучения. Схемы просвечивания представлены на рис.2-5 .

    Рис. 2. Схема панорамного просвечивания изнутри трубы за одну установку источника излучения

    4.2. Криволинейные швы тройников и отводов можно просвечивать по одной из схем, представленных на рис. 5-10 , в зависимости от диаметров свариваемых патрубков, их соотношений, условий доступа к шву.

    Примечание. На рис. 2-10 использованы следующие обозначения:

    Ии и Ис - источники излучения, расположенные соответственно изнутри и снаружи контролируемой сварной трубной конструкции;

    По и Пи - пленки, расположенные соответственно снаружи и изнутри контролируемой сварной трубной конструкции.

    Рис. 3. Схема фронтального просвечивания через две стенки за три установки источника излучения

    4.3. При просвечивании по схемам, представленным на рис. 2 , 6 и 7 табл.1 обязательного приложения 7 .

    4.4. При просвечивании по схемам, представленным на рис. 3 , 8-10 , используют любые рентгеновские аппараты и источники радиоактивного излучения, максимально допустимую начальную активность, которых выбирают в соответствии с табл.2 обязательного приложения 7 . Фокусное расстояние при просвечивании по схемам, представленным на рис.10 , должно быть не менее диаметра того патрубка, к внутренней поверхности которого прикладывается радиографическая пленка.

    Примечание. При просвечивании тройников по схемам, представленным на рис.6-10 , пленку укладывают отдельными небольшими отрезками, способными обеспечить плотное ее прилегание к профилю тройника.

    Рис. 4. Схема фронтального просвечивания через две стенки за одну или две установки источника излучения на плоскую кассету (схема просвечивания «на эллипс»)

    4.5. Требования, предъявляемые к просвечиванию по схеме, представленной на рис.4 :

    4.5.1. За две экспозиции «на эллипс» под углом 90° можно просвечивать трубы диаметром от 57 до 108 мм включительно, используя источники излучения, оговоренные в п.2.1 , а также трубы диаметром 114 и 133 мм с толщиной стенки 6 мм и менее;

    4.5.2. За одну экспозицию «на эллипс», используя изотоп иридий-192, допускается просвечивать трубы диаметром 57 мм с толщиной стенки 5 мм и менее и диаметром 60 мм с толщиной стенки 4 мм и менее;

    4.5.3. За одну экспозицию «на эллипс», используя изотоп цезий-137, допускается просвечивать трубы диаметром 76 мм с толщиной стенки 4 мм и менее, а также трубы диаметром 57 и 60 мм.

    Рис. 5. Схема фронтального просвечивания через две стенки за одну установку источника излучения без его смещения относительно сварного шва:

    А - для соединения труб; б - для соединений врезок

    Рис. 6. Схема просвечивания криволинейного шва изнутри трубы за одну установку источника излучения

    Рис. 7. Схема просвечивания криволинейного шва изнутри трубы за несколько установок источника излучения

    Рис. 8. Схема фронтального просвечивания криволинейных швов врезок малого диаметра за одну установку источника излучения

    Рис. 9. Схема фронтального просвечивания криволинейных швов врезок большого диаметра за несколько установок источника излучения

    Рис. 10. Схемы просвечивания криволинейных швов врезок снаружи трубы за несколько установок источника излучения

    Примечания:

    1. Трубы диаметром 114 и 133 мм с толщиной стенки более 6 мм необходимо просвечивать за три установки источника излучения по схеме, представленной на рис.3 . Активность источников излучения выбирается в соответствии с табл.2 обязательного приложения 7 .

    2. Просвечивание за две экспозиции можно производить на гибкую кассету, которая должна охватывать половину окружности сварного шва.

    3. Просвечивание тройников и отводов малого диаметра (до 76 мм включительно) можно осуществлять в соответствии с требованиями пп. 4.5.2 и 4.5.3 настоящего ОСТа.

    4. При контроле «на эллипс» следует применять мелкозернистые высококонтрастные радиографические пленки (типа РТ-4М, РТ-5 и им подобные) в комбинации со свинцовыми усиливающими экранами.

    4.6. Просвечивание трубопроводов диаметром менее 57 мм с соотношением (d и D - соответственно внутренний и наружный диаметры) следует производить по схеме (рис.5 ). Если соотношение , просвечивание осуществляется по схеме, представленной на рис.4 , за одну установку «на эллипс».

    4.7. Просвечивание стыков врезок диаметром менее 76 мм в трубопроводы большого диаметра можно осуществлять в соответствии с рис.8 и требованиями п.4.4 .

    4.8. Просвечивание стыков врезок в трубопроводы менее 76 мм производится в соответствии с рис.5 ,б.

    4.9. При просвечивании по схемам, представленным на рис.5 , разрешается использовать источники ионизирующего излучения, оговоренные в п.2.1 настоящего стандарта, а радиографические пленки следует применять в соответствии с п.4.5 , примечания 4. Фокусное расстояние должно быть не менее пяти диаметров трубопровода.

    4.10. Фокусное расстояние при просвечивании по схеме (рис.4 ) выбирает в зависимости от активности используемого источника излучения и требуемой чувствительности контроля по табл.3 приложения 7 .

    4.11. Смещение источника излучения относительно плоскости сварного шва при контроле по схеме (рис.4 ) составляет 0,35 Ф - 0,5 Ф при просвечивании за одну экспозицию и »0,2 Ф при просвечивании за две экспозиции (Ф - фокусное расстояние).

    5. ВЫБОР ПАРАМЕТРОВ РАДИОГРАФИЧЕСКОГО КОНТРОЛЯ

    5.1. Энергию рентгеновского излучения (напряжение на трубке), тип радиоактивного источника, тип радиографической планки, схему зарядки кассет (с усиливающими экранами или без них), толщину защитных свинцовых экранов (от рассеянного излучения) и схему просвечивания выбирают в зависимости от геометрических размеров контролируемого изделия таким образом, чтобы чувствительность контроля не превышала половины размера по глубине минимального из недопустимых дефектов, но не более значений, приведенных в табл.4 за исключением случая, оговоренного в табл.4 , приложение 3 . Конкретные значения недопустимых дефектов регламентируются технической документацией на контролируемый объект (СНиП, ТУ, инструкции и т.п.).

    5.2. Максимальную допустимую активность источника излучения и минимальное фокусное расстояние в зависимости от геометрических размеров контролируемых изделий при требуемой чувствительности контроля определяют согласно значениям табл. 1 , 2 , 3 обязательного приложения 7 . Там же приведены примеры пользования табл.1 , 2 , 3 . В справочном приложении 8 (рисунок) представлены материалы по зависимости МЭД от активности источников излучения и поправочные коэффициенты для изотопов Jr-192, Se-75 и Tm-170, при использовании которых через каждые, 1-2 недели необходимо увеличивать время экспозиции делением его первоначального значения на поправочный коэффициент.

    5.3. Ориентировочное время экспозиции при просвечивании рентгеновскими аппаратами и радиоактивными источниками определяют в соответствии с номограммами, представленными в рекомендуемом приложении 9 (рис. 1 , 2 ).

    5.4. Суммарная разностенность просвечиваемых за одну экспозицию толщин не должна превышать следующих величин (для оптических плотностей 1,5-3,0 ед.):

    При напряжении на рентгеновской трубке 200 кВ - 5,5 мм;

    При напряжении на рентгеновской трубке 260 кВ - 7,0 мм;

    При использовании иридия-192 - 15 мм;

    При использовании цезия-137 - 17 мм.

    При наличии оборудования для просмотра снимков, имеющих почернение до 4 единиц оптической плотности, суммарная разностенность не должна превышать:

    7,5 мм при напряжении на трубке 200 кВ;

    9,0 мм при напряжении на трубке 260 кВ;

    20,0 мм при использовании иридия-192;

    22,0 мм при использовании цезия-137.

    Примечания:

    1. Изображение на снимке более тонкого элемента должно иметь максимальную оптическую плотность (3,0 и 3,6-4,0 е.о.п. соответственно).

    2. При определении чувствительности контроля расчет необходимо вести по той толщине стенки, на которую устанавливаются эталоны чувствительности.

    5.5. Эталоны чувствительности и имитаторы при просвечивании по схемам, представленным, на рис. 2 , 3 , 6 , 7 , 8 , 9 , устанавливают между контролируемым изделием и пленкой, а при просвечивании по схемам, представленным на рис.4 , 5 , 10 , - между контролируемым изделием и источником излучения.

    5.6. Длина каждого снимка должна обеспечивать перекрытие изображений смежных участков сварных соединений при длине контролируемого участка до 100 мм не менее 0,2 длины участка, при длине контролируемого участка свыше 100 мм - не менее 20 мм с каждой стороны.

    5.7. Ширина радиографической пленки должна обеспечивать получение изображения сварного шва и околошовной зоны по 20 мм с обеих сторон шва, эталонов чувствительности, имитаторов, если они используются, и маркировочных знаков.

    5.8. При просвечивании по схемам представленным на рис. 2 , 3 и 5 , угол между направлением излучения и плоскостью сварного шва не должен превышать 5°.

    5.9. При просвечивании по схемам, представленным на рис.4 , 6-10 , угол между направлением излучения и плоскостью контролируемого участка сварного шва в любой его точке не должен превышать 30°.

    5.10. Фотообработку экспонированных пленок необходимо осуществлять в строгом соответствии с инструкциями завода-изготовителя этих пленок, обращая при этом особое внимание на соблюдение требований по времени проявления (обычно ручное проявление составляет не менее 5 мин) и температуре растворов.

    После фотообработки и сушки на радиограммах должны отсутствовать дефекты, способные повлиять на правильность расшифровки радиограмм.

    5.11. Основные правила хранения и фотообработки пленки приведены в обязательном приложении 10 .

    6. РАСШИФРОВКА РАДИОГРАФИЧЕСКИХ СНИМКОВ

    6.1. Снимки, допущенные к расшифровке, должны удовлетворять следующим требованиям:

    На снимках не должно быть пятен, полос, загрязнений, следов электростатических разрядов и других повреждений эмульсионного слоя, затрудняющих их расшифровку;

    На снимках должны быть видны изображения эталонов чувствительности и маркировочных знаков, ограничительных меток, имитаторов и мерительных поясов, если они использовались,

    Оптическая плотность изображений основного металла контролируемого участка должна быть не менее 2 е.о.п.

    При использовании высокочувствительных экранных радиографических пленок снимки должны иметь потемнение, находящееся в пределах 1-2 е.о.п. (на участках с изображением основного металла).

    Разность оптических плотностей изображений канавочного эталона чувствительности и основного металла в месте установки эталона должна быть не менее 0,3 е.о.п.

    6.2. Чувствительность снимков (наименьший диаметр выявляемой на снимке проволоки проволочного эталона, наименьшая глубина выявляемой на снимке канавки канавочного эталона, наименьшая толщина пластинчатого эталона, при которой на снимке выявляется отверстие с диаметром, равным удвоенной толщине эталона) во всех случаях не должна превышать значений, приведенных в табл.4 .

    6.3. Чувствительность контроля К определяют ( в мм или в %) по изображению на снимке канавочного, проволочного или пластинчатого эталона по приведенным ниже формулам.

    Таблица 4


    Толщина контролируемого металла в месте установки эталона чувствительности, мм

    Класс чувствительности контроля

    1

    2

    3

    До 5

    0,10

    0,10

    0,20

    Свыше 5 до 9 включительно

    0,20

    0,20

    0,30

    Свыше 9 до 12 включительно

    0,20

    0,30

    0,40

    Свыше 12 до 20 включительно

    0,30

    0,40

    0,50

    Свыше 20 до 30 включительно

    0,40

    0,50

    0,60

    Свыше 30 до 40 включительно

    0,50

    0,60

    0,75

    Свыше 40 до 50 включительно

    0,60

    0,75

    1,00

    Свыше 50 до 70 включительно

    0,75

    1,00

    1,25

    Свыше 70 до 100 включительно

    1,00

    1,25

    1,5

    Свыше 100 до 120 включительно

    1,25

    1,50

    2,00

    Примечания:

    1. При давлении в трубопроводе до 10 МПа включительно чувствительность контроля должна соответствовать третьему классу, при давлении свыше 10 МПа - второму.

    2. Если на какой-то конкретный объем разрабатывается специальная технология сварки и контроля сварных соединений, то в нормативно-технической документации (Инструкции, Руководстве и др.) должен быть оговорен класс чувствительности снимка (контроля).

    3. При просвечивании «на эллипс» с использованием канавочных эталонов чувствительность снимков можно считать достаточной, если видна следующая меньшая по величине канавка по сравнению о той, которая соответствует допустимой глубине дефектов.

    При использовании канавочных или пластинчатых эталонов чувствительности

    При использовании проволочных эталонов чувствительности

    Где S - контролируемая толщина металла в месте установки эталона, мм;

    Толщина просвечиваемого металла в месте установки эталона, т.е. толщина контролируемого металла плюс толщина эталона (), мм;

    Глубина наименьшей видимой на снимке канавки канавочного эталона, толщина пластинчатого эталона, при которой на снимке видно отверстие диаметром, равным удвоенной толщине этого эталона, мм;

    Толщина эталона чувствительности, мм;

    Диаметр наименьшей видимой на снимке проволоки проволочного эталона, мм.

    6.4. Расшифровка и оценка качества сварных соединений по снимкам, на которых отсутствуют изображения эталонов чувствительности и имитаторов (если они используются), но допускается (за исключением случаев, оговоренных в пп.3.8 и 3.13 ).

    6.5. Размеры дефектов при расшифровке снимков следует округлять до ближайших значений из ряда чисел: 0,2; 0,3; 0,4; 0.5; 0,6; 0,8; 1,0; 1,2; 1,5; 2,0; 2,5; 2,7; 3,0.

    6.6. При просвечивании «на эллипс» (см. рис.4 ) размеры дефектов участка сварного соединения, расположенного со стороны источника излучения, пород их округлением должны быть умножены на коэффициент

    Где f - расстояние от источника излучения до поверхности контролируемого участка сварного соединения, мм;

    S - толщина контролируемого участка сварного соединения, мм;

    D - диаметр трубы, мм.

    Примечание. При просвечивании по схемам, представленным на рис.5 , размеры изображений дефектов на коэффициент a не умножаются.

    6.7. Результаты расшифровки снимков с указанием их чувствительности и выявленных дефектов заносят в «Журнал по контролю качества сварных стыков».

    Оформление результатов радиографического контроля и заполнение журнала производят в соответствии с требованиями СНиП или другими действующими нормативными документами (форма журнала заключений представлена в обязательном приложении 11 ).

    6.8. При расшифровке снимков и оформлении результатов радиографического контроля необходимо пользоваться условными обозначениями различных типов дефектов и схематическим их изображением в сварном шве и на радиограммах, которые представлены в приложении 12 .

    6.9. Каждый тип дефекта должен быть отмечен в заключении отдельно и иметь подробное описание в соответствии с критериями оценки качества сварных соединений, установленными нормативно-технической документацией (СНиП, инструкциями и т.д.), с указанием:

    Символа условного обозначения дефекта;

    Размера дефекта или суммарной длины цепочки и скопления пор или шлаков в миллиметрах (с указанием преобладающего размера дефекта в группе);

    Количества однотипных дефектов на снимке;

    Глубины дефектов в миллиметрах или процентах от толщины металла свариваемых моментов трубопровода. Допускается вместо записи глубины дефектов в миллиметрах или процентах указывать о помощью знаков >, = или
    6.10. Просмотр и расшифровку снимков после их полного высыхания следует проводить в затемненном помещении с применением специальных осветителей - негатоскопов.

    6.11. Заключение по результатам контроля следует давать отдельно по каждому отрезку снимка длиной 350 мм (для рулонных снимков) и по каждому снимку (для форматных); после анализа всех отрезков или снимков составляют заключение о качестве сварного стыка в целом.

    В тех случаях, когда снимки имеют одинаковую чувствительность, а на изображении сварного шва отсутствуют дефекты, их можно группировать и записывать в заключении одной строкой.

    6.12. Примеры записи вида и параметров дефектов при оформлении журнала, способ измерения дефектов, а также методики определения глубины дефектов с помощью фотометров и денситометров представлены в рекомендуемом приложении 13 .

    6.13. При расшифровке радиографических снимков, абсолютная чувствительность которых в миллиметрах меньше значений, приведенных в п.6.2 настоящего раздела, можно руководствоваться методикой, изложенной в рекомендуемом приложении 14 .

    Схемы просвечивания. В основном используют схемы просвечивания рис. 2.13 – 2.14, обеспечивающие контроль качества шва по участкам, как плоских протяженных изделий, так и изделий типа полых тел вращения. Анализ приведенных схем показывает, что только при кольцевом просвечивании фокусное расстояние и толщина стенки являются относительно постоянными величинами, при всех остальных способах контроля их значения меняются от центра к краю контролируемого участка. Суммарное воздействие этих двух факторов оказывает существенное воздействие на получаемые результаты. В частности, радиографический снимок имеет, как правило, различные контрастности, плотности почернения, общие нерезкости изображения и, как следствие, различные значения относительной чувствительности контроля по центру и краю снимка.

    Таким образом, основным ограничением при использовании в промышленной радиографии любой из схем просвечивания является получение:

    · допустимой разности плотностей почернения и допустимых общих нерезкостей изображения по центру и краю снимка;

    · требуемой правилами контроля относительной чувствительности просвечивания по центру и краям снимка;

    · экономически оправданной производительности контроля.

    Для всех видов сварных соединений и схем просвечивания угол между направлением излучения и нормалью к пленке в центре снимка и расстояние между контролируемым сварным соединением и пленкой должны быть минимальными и в любом случае не превышать 45 0 и 150 мм.

    Выбор параметров радиографического контроля. После выбора схемы просвечивания устанавливают величину фокусного расстояния. Фокусное расстояние – расстояние от источника излучения до пленки. С увеличением фокусного расстояния несколько увеличивается чувствительность метода, но возрастает (пропорционально квадрату расстояния) время экспозиции. Фокусное расстояние рассчитывается в зависимости от размера и толщины контролируемого участка сварного соединения, схемы просвечивания и т.д. в соответствии с ГОСТ 7512.



    Чтобы получить качественный снимок, необходимо также правильно выбирать время экспозиции пленки (выдержку), которое прямо пропорционально квадрату фокусного расстояния и зависит от энергии и мощности источника ионизирующего излучения, толщины и плотности просвечиваемого материала, коэффициента усиления экранов и т.д. Расчетным путем определить выдержку с учетом этих факторов достаточно сложно. Поэтому на практике пользуются таблицами, построенными на основании экспериментальных данных, графиками, номограммами и т.д. Номограммы строятся для определенного фокусного расстояния, и дает зависимость экспозиции от толщины материала для различных напряжений на рентгеновской трубке и определенных типах пленок и экранов.

    Четкость (резкость) радиографического снимка в значительной степени зависит от геометрической нерезкости, образующейся по границам изображения дефектов зоны плавного затемнения. Геометрическая нерезкость связана с размерами активной части источника излучения, поскольку каждая точка эффективного фокусного пятна создает своим излучением проекцию дефектного места на пленке (рис. 2.15).

    На величину геометрической нерезкости влияют также расстояние от пленки до дефекта (рис. 2.16). В общем случае значение геометрической нерезкости должно составлять не более половины значения чувствительности контроля (наименьший диаметр выявляемой на снимке проволоки проволочного эталона, наименьшая глубина выявляемой на снимке канавки канавочного эталона, наименьшая толщина пластинчатого эталона, при которой на снимке выявляется отверстие с диаметром, равным удвоенной толщине эталона) в мм.

    По приведенным схемам видно, что четкость изображения тем выше, чем меньше размер активной части источника и расстояния от пленки до дефекта, а также чем больше фокусное расстояние. Однако возрастание фокусного расстояния приводит к необходимости увеличения экспозиции.

    ЛАБОРАТОРНАЯ РАБОТА № 3.

    УЛЬТРАЗВУКОВОЙ КОНТРОЛЬ

    ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ И ОСНОВНЫЕ ПОНЯТИЯ

    Типы ультразвуковых волн. Ультразвуковыми колебаниями называют механические колебания упругой среды, частота которых лежит за порогом слышимости человеческого слуха, т.е. более 20 кГц.

    Процесс распространения колебаний в пространстве называется волной . Граница, отделяющая колеблющиеся частицы от частиц, еще не начавших колебаться, носит название фронта волны . Упругие волны характеризуются скоростью распространения С (м/с), длиной волны λ (м) и частотой f (с -1). Длина волны связана со скоростью её распространения и частотой колебаний соотношением

    Скорость распространения волны определяется физическими свойствами среды. Поэтому изменение длины ультразвуковой волны в любой среде может быть достигнуто только путем изменения частоты возбуждаемых колебаний.

    В зависимости от упругих свойств среды в ней могут распространяться упругие колебания различных типов, отличающиеся направлением смещения колеблющихся частиц. В связи с этим различают следующие типы колебаний: продольные, поперечные, поверхностные и т.д.

    Если колебания частиц среды происходят в направлении, совпадающем с направлением распространения волны, то такие колебания называются продольными (рис. 3.1 а).

    Эти колебания могут распространяться в твердой, жидкой и газообразной средах. Если направление колебаний частиц среды перпендикулярно направлению распространения волны, то такие колебания называются поперечными (рис. 3.1. б). Они могут распространяться только в твердой среде, которая обладает упругостью формы, т.е. способна сопротивляться деформации сдвига.

    Значения скоростей распространения волн в безграничном твердом теле приведены в таблице 3.1.

    Таблица 3.1. Скорости распространения волн в безграничном твердом теле

    Продольные и поперечные упругие волны (объёмные однородные волны) наиболее широко используются при дефектоскопии материалов для обнаружения внутренних дефектов. Помимо этого для выявления поверхностных и подповерхностных дефектов используются и другие типы волн (неоднородные).

    Из неоднородных волн в дефектоскопии в основном применяются поверхностные (волны Рэлея) и нормальные (волны Лэмба). Поверхностная волна представляет собой линейную комбинацию продольной и поперечной волн. При её распространении частицы тела движутся по эллипсам, большая ось которых перпендикулярна границе. Эти фигуры вытягиваются с глубиной, т.е. в направлении, перпендикулярном от поверхности ввода. Проникновение волны вглубь тела приблизительно равно длине волны λ . Поверхностная волна способна распространяться на большое расстояние вдоль поверхности твердого тела.

    Нормальные волны (Лэмба) образуются при наклонном падении волны на пластину, толщина которой соизмерима с длиной волны. В этом случае вследствие взаимодействия падающей волны с многократно отраженными волнами внутри пластины возникают резонансные явления. Они приводят к образованию нормальных волн, бегущих вдоль пластины, и стоячих в перпендикулярном направлении.

    Условия образования нормальных волн в твердой пластине усложняется из-за наличия в ней продольных и поперечных волн. При отражении эти волны частично трансформируются одна в другую.

    Волна Лэмба обеспечивает достаточную чувствительность при длине листа в направлении прозвучивания 0,3…0,5 м. Нормальные волны успешно применяются для контроля листов, труб, оболочек, имеющих небольшую толщину (3…5 мм и менее). Этими волнами обнаруживаются поверхностные трещины не только с наружной, но и с внутренней стороны, а также дефекты, ориентированные вдоль поверхности, которые трудно обнаружить объемными волнами.

    Величина оптической плотности согласно ГОСТ 7512 в зоне сварного соединения (на сварном шве) должна быть не менее 1,5 е.о.п. Верхний предел оптической плотности при использовании технических мелкозернистых радиографических пленок может превышать 4 е.о.п. и ограничен лишь устройствами для просмотра снимков.

    Для определения чувствительности радиационного контроля следует использовать проволочные и канавочные эталоны чувствительности по ГОСТ 7512.

    Чувствительность контроля К (К I , мм, или К II , %) определяют по изображению на снимке канавочного и проволочного эталона по формулам:

    а) для канавочных эталонов чувствительности:

    К I = h min , (1)

    б) для проволочных эталонов чувствительности:

    К I = d min , (3)

    , (4)

    где S – толщина контролируемого металла в месте установки эталона, мм;

    S – радиационная толщина просвечиваемого металла в месте установки эталона, т.е. толщина контролируемого металла плюс толщина эталона (S = S + h );

    h min – глубина наименьшей видимой на снимке канавки канавочного эталона (толщина пластинчатого эталона, когда на снимке выявляется отверстие диаметром, равном удвоенной толщине этого эталона), мм;

    h – толщина эталона чувствительности, мм;

    d min – диаметр наименьшей видимой на снимке проволоки проволочного эталона, мм.

    Чувствительность контроля (чувствительность снимков) при просвечивании «на эллипс» за одну или две экспозиции определяют по отношению к удвоенной толщине стенки трубы:

    а) при использовании канавочных эталонов чувствительности:

    К I = h min , (5)

    ; (6)

    б) при использовании проволочных эталонов чувствительности:

    К I = d min , (7)

    . (8)

    Примечание - При просвечивании «на эллипс» с использованием канавочных эталонов чувствительность снимков может считаться достаточной, если видна следующая меньшая по величине канавка по сравнению с той, которая соответствует допускаемой высоте дефектов.

        1. Для маркировки радиограмм (номер стыка, номер пленки, клейма сварщиков и др.) при радиографическом контроле необходимо использовать маркировочные знаки в виде цифр и букв русского или латинского алфавита, а также дополнительные знаки в виде стрелок, тире и т.п.

    Маркировочные знаки должны быть изготовлены из материала (например, из свинца), обеспечивающего получение их четких изображений на радиографических снимках.

          Для нахождения дефектных участков шва необходимо использовать мерительные пояса со знаками, обеспечивающими разметку контролируемого соединения. Знаки должны быть изготовлены из материала (например, из свинца), обеспечивающего получение их четких изображений на радиографических снимках.

          Схемы просвечивания сварных соединений

          1. Основные схемы просвечивания стыковых и угловых сварных соединений трубопроводов, технологических и вспомогательных трубопроводов приведены на рисунках 7 - 13.

    Примечание - На рисунках 7 –13 использованы следующие обозначения:

      Ии и Ис - источники излучения, расположенные соответственно изнутри и снаружи контролируемой сварной трубной конструкции;

      Пс и Пи - пленки, расположенные соответственно снаружи и изнутри контролируемой сварной трубной конструкции.

            Кольцевые швы трубопроводов, переходов и трубных узлов (приварки тройников, отводов) просвечивают по одной из четырех схем в зависимости от геометрических размеров труб, типа и активности применяемого источника излучения. Схемы просвечивания представлены на рисунках 6 - 9а).

            Кольцевые сварные швы свариваемых изделий, в которые возможен свободный доступ внутрь, контролируют за одну установку источника излучения по схеме, представленной на рисунке 6 (панорамное просвечивание).

            При строительстве, реконструкции и капитальном ремонте линейную часть трубопроводов целесообразно контролировать по схеме (см. рисунок 6) с помощью самоходного внутритрубного устройства («кроулера»), технические характеристики которого выбираются исходя из следующих параметров: диаметра трубы; толщины стенки; чувствительности контроля; типа рентгенографической пленки; источника ионизирующего излучения; темпов сооружения линейной части и т.д.

    Примечание - При радиографическом контроле по схеме, представленной на рисунке 6, применять только рулонные пленки.

    Рисунок 6 - Схема панорамного просвечивания изнутри трубы за одну установку
    источника излучения

            Сварные соединения трубопроводов, к которым невозможен доступ изнутри трубы, контролируются по схеме, представленной на рисунке 7 (фронтальное просвечивание). Просвечивание таких швов осуществляется через две стенки трубы за три и более установок источника ионизирующего излучения.

            Основные параметры просвечивания по схеме, представленной на рисунке 7:

      источник излучения располагается непосредственно на трубе,

      угол между направлением излучения и плоскостью сварного шва не должен превышать 5;

      фокусное расстояние F = D (D – наружный диаметр трубы);

      минимальное количество экспозиций равно 3. При каждой экспозиции источник излучения следует смещать на угол не более 120.

    Рисунок 7 - Схема фронтального просвечивания через две стенки за три установки
    источника излучения

            За одну экспозицию «на эллипс» (см. рисунок 8) при использовании изотопа иридий-192, допускается просвечивать сварные соединения труб диаметром 57 мм с толщиной стенки 5 мм и менее и диаметром 60 мм с толщиной стенки 4 мм и менее.

    Рисунок 8 - Схема фронтального просвечивания через две стенки за одну или две установки источника излучения на плоскую кассету (схема просвечивания «на эллипс»)

            3а одну экспозицию «на эллипс» при использовании изотопа цезий-137, допускается просвечивать трубы диаметром 76 мм с толщиной стенки 4 мм и менее, а также трубы диаметром 57 и 60 мм.

            За две экспозиции «на эллипс» (см. рисунок 8) под углом 90 просвечивают сварные соединения труб диаметром от 57 до 108 мм включительно, а также сварные соединения труб диаметром 114 и 133 мм с толщиной стенки 6 мм и менее. При этом используют источники излучения, оговоренные в 7.4 настоящего документа. Допускается просвечивание за две экспозиции производить на гибкую кассету, которая должна охватывать половину окружности сварного шва.

            Трубы диаметром 114 и 133 мм с толщиной стенки более 6 мм необходимо просвечивать за три установки источника излучения по схеме, представленной на рисунке 7.

            Просвечивание тройников и отводов малого диаметра (до 76 мм включительно) осуществляют в соответствии с требованиями 7.4 и 7.4 настоящего документа.

            При контроле «на эллипс» следует применять мелкозернистые высококонтрастные радиографические пленки в комбинации со свинцовыми усиливающими экранами.

            Швы приварки врезок, отводов и т.п. к основной трубе просвечивают по одной из схем, представленных на рисунках 9б)-12, в зависимости от диаметров свариваемых элементов, их соотношений, условий доступа к шву.

            Просвечивание трубопроводов диаметром менее 57 мм с соотношением
            d/D < 0,8 (где d и D – внутрений и наружный диаметры соответственно) следует производить по схеме рисунка 9. Если соотношение d/D  0,8, просвечивание осуществляется по схеме, представленной на рисунке 8, за одну установку «на эллипс».

            Просвечивание сварных швов врезок в трубопроводы менее 76 мм производится в соответствии с рисунком 9б).

            Просвечивание сварных швов врезок диаметром менее 76 мм осуществляют в соответствии со схемой, приведенной на рисунке 10, и требованиями 7.4 настоящего документа.

            При просвечивании по схемам, представленным на рисунке 9, разрешается использовать источники ионизирующего излучения, оговоренные в 7.42 настоящего документа, а радиографические пленки следует применять в соответствии с 7.4 настоящего документа. Фокусное расстояние должно быть не менее пяти диаметров трубопровода.

            Просвечивание стыков врезок диаметром более 76 мм осуществляют в соответствии со схемой, приведенной на рисунке 11, и требованиями 7.4 настоящего документа.

            Смещение источника излучения относительно плоскости сварного шва при контроле по схеме рисунка 8 составляет (0,35 – 0,5)F при просвечивании за одну экспозицию и ~0,2F – при просвечивании за две экспозиции (где F – фокусное расстояние).

    а) для соединения труб; б) для соединений врезок

    Рисунок 9 - Схема фронтального просвечивания через две стенки за одну установку источника излучения без его смещения относительно сварного шва

    Рисунок 10 - Схема фронтального просвечивания швов врезок малого диаметра за одну установку источника излучения

    Рисунок 11 - Схема фронтального просвечивания швов врезок большого диаметра
    за несколько установок источника излучения

            При просвечивании по схемам, представленным на рисунке 12, фокусное расстояние должно быть не менее диаметра того патрубка, к внутренней поверхности которого прикладывается радиографическая пленка.

    Примечание - При просвечивании швов врезок по схемам, представленным на рисунках 10-12, пленку укладывают отдельными небольшими отрезками, о6еспечивающими ее (пленки) плотное прилегание к профилю шва врезки.

    Рисунок 12 - Схема просвечивания швов врезки снаружи трубы за несколько установок источника излучения

          Подготовка и проведение радиографического контроля

          1. Перед началом контроля специалист, осуществляющий контроль, должен:

      выполнить требования 7.1 настоящего документа;

      ознакомиться с результатами предшествующего контроля;

      убедиться в отсутствии недопустимых наружных дефектов.

            Поверхность сварного шва перед проведением радиографического контроля должна быть зачищена от неровностей и брызг металла.

            Радиографический контроль проводят в соответствии с операционной технологической картой контроля (см. приложение Г).

            После устранения дефектов сварного шва, выявленных по результатам предшествующего контроля, производят разметку сварного соединения, задают начало и направление отсчета координат.

            Разметку сварного соединения выполняют несмывающимся маркером (маркером по металлу), обеспечивающим сохранение маркировки до сдачи трубопровода под изоляцию.

            Закрепляют на трубопроводе мерный пояс. Применение мерного пояса обязательно.

            Для привязки снимков к сварному соединению системой свинцовых маркировочных знаков, установленных на стыке (на участке сварного стыка), обозначают:

      номер стыка;

      направление укладки пленки, кассет;

      координаты участка сварного соединения по мерному поясу;

      номер пленки;

      дату проведения радиографического контроля;

      шифр (характеристика) объекта;

      шифр специалиста по НК;

      шифр (клеймо) сварщика или бригады сварщиков.

    Примечание- Шифры объекта, специалиста по НК и сварщика должны быть присвоены приказом по организации, выполняющей соответствующие работы.

            На контролируемых участках должны быть установлены эталоны чувствительности так, чтобы на каждом снимке было полное изображение эталона. При панорамном просвечивании кольцевых сварных соединений устанавливать эталоны чувствительности по одному на каждую четверть окружности сварного соединения.

            Для измерения высоты дефекта по его потемнению на радиографическом снимке методом визуального или инструментального сравнения с эталонными канавками или отверстиями используют канавочные эталоны чувствительности или имитаторы.

            Форма имитаторов может быть произвольной, глубину и ширину (диаметр) канавок и отверстий следует выбирать по таблице 21(количество канавок и отверстий не ограничивается).

    Таблица 21

    Толщина имитатора

    Глубина канавок и отверстий

    Предельные отклонения глубины, мм

    Ширина канавок (диаметр отверстий), мм

    0.1,£ h i £ 0,5

    0.5,£ h i £ 2.7

    1,0 + 0,1

    2,0 + 0,1

    С целью более точного распознавания дефектов (типа шлаковых включений) допускается заполнение отверстий имитаторов жидким стеклом.

            Имитаторы должны иметь паспорта или сертификаты (на партию) со штампом предприятия-изготовителя, в которых обязательно указывается материал, из которого они изготовлены, их толщина, глубины всех канавок (отверстий) и их ширина (диаметр отверстий). Имитаторы должны проходить аттестацию 1 раз в 3 года.

            Проволочные эталоны чувствительности следует устанавливать непосредственно на сварной шов с направлением проволок поперек шва. Канавочные эталоны чувствительности и имитаторы устанавливают с направлением канавок поперек сварного шва на расстоянии от него не менее чем 5 мм.

          При просвечивании трубопроводов с расшифровкой только прилегающих к пленке (к кассетам) участков сварного соединения эталоны чувствительности помещают между контролируемым участком трубы и пленкой (кассетой с пленкой).

          Суммарная разность толщин при фронтальном просвечивании разнотолщинных сварных соединений и наличии оборудования для просмотра снимков с плотностью потемнения не более 3,0 е.о.п. не должна превышать:

      5,5 мм при напряжении на рентгеновской трубке 200 кВ;

      7,0 мм при напряжении на рентгеновской трубке 260 кВ;

      14,0 мм при напряжении на рентгеновской трубке 300 кВ;

      15,0 мм при напряжении на рентгеновской трубке 400 кВ;

      16,0 мм при напряжении на рентгеновской трубке 600 кВ;

      10,0 мм при использовании изотопа селен - 75;

      15,0 мм при использовании изотопа иридий -192;

      17,0 мм при использовании изотопа цезий - 137.

          При наличии оборудования для просмотра снимков, имеющих потемнение более 3,0 е.о.п., суммарная разность толщин при фронтальном просвечивании разнотолщинных соединений не должна превышать:

      7,5 мм при напряжении на рентгеновской трубке 200 кВ;

      9,0 мм при напряжении на рентгеновской трубке 260 кВ;

      17,0 мм при напряжении на рентгеновской трубке 300 кВ;

      20,0 мм при напряжении на рентгеновской трубке 400 кВ;

      21,0 мм при напряжении на рентгеновской трубке 600 кВ;

      12,0 мм при использовании изотопа селен - 75;

      20,0 мм при использовании изотопа иридий -192;

      22,0 мм при использовании изотопа цезий -137.

          При определении чувствительности контроля расчет необходимо вести по той толщине стенки трубы, на которую установлены эталоны чувствительности.

          При определении фактора экспозиции (времени просвечивания) следует пользоваться номограммами, которые позволяют по исходным данным: (толщина стенки трубы, диаметр трубы, схема просвечивания, фокусное расстояние, параметры источника излучения) определять ориентировочное время экспозиции. Корректировка времени экспозиции производится при пробном просвечивании.

          Фотообработку радиографической пленки следует производить в соответствии с требованиями фирмы изготовителя этой пленки. При фотообработке пленок предпочтение следует отдавать автоматизированным проявочным процессам.

          Расшифровка снимков

          1. Снимки, допущенные к расшифровке, должны удовлетворять следующим требованиям:

      длина каждого снимка должна обеспечивать перекрытие изображения смежных участков сварного соединения на величину не менее 20 мм, а его ширина - получение изображения сварного шва и прилегающих к нему околошовной зоны шириной не менее 20 мм с каждой стороны;

      на снимках не должно быть пятен, полос, царапин, загрязнений, следов электростатических разрядов и других повреждений эмульсионного слоя, затрудняющих их расшифровку;

      на снимках должны быть видны изображения сварного шва, эталонов чувствительности и маркировочных знаков, ограничительных меток, имитаторов и мерительных поясов;

      оптическая плотность самого светлого участка сварного шва должна быть не менее 1,5 е.о.п.;

      разность оптических плотностей изображения канавочного эталона чувствительности и основного металла в месте установки эталона должна быть не менее 0,5 е.о.п.

            Расшифровка и оценка качества сварных соединений по снимкам, на которых отсутствуют изображения эталонов чувствительности, имитаторов (если они использовались) и маркировочных знаков, не допускается, если это специально не оговорено технической документацией.

            Допускается вместо записи высоты дефектов (в миллиметрах или %) указать с помощью знаков ">", "=" или "<" величину дефекта по отношению к максимально допустимой для данного сварного соединения.

    Запись высоты дефектов производить в миллиметрах, с указанием % отношения фактической величины дефекта по отношению к максимально допустимой величине дефекта для данного сварного соединения, с указанием расположения дефекта по знакам маркировочного пояса.

            В заключениях по результатам радиографического контроля допускается одной строкой записывать данные расшифровки по снимкам одинаковой чувствительности и не имеющим изображения дефектов. При расшифровке снимков размеры дефектов следует округлять в большую сторону до ближайших чисел, определяемых из ряда: 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,2; 1,5; 2,0; 2,5; 2,7; 3,0. При размерах дефектов более 3,0 мм округление производят с дискретностью 0,5 мм.

    Примечание - При просвечивании «на эллипс» размеры дефектов участков сварного соединения, расположенного со стороны источника излучения, перед их округлением должны быть умножены на коэффициент:

    =
    ,

    где f - расстояние от источника излучения до поверхности контролируемого участка сварного соединения;

    S - толщина контролируемого участка сварного соединения;

    D - диаметр трубы.

          Результаты контроля оформляются в соответствии с 6.5.

          Ниже приведены примеры записи дефектов при оформлении заключений.

    Пример 1 . На снимке видны изображения двух продольных трещин, длина которых 10 мм, а высота 20 % толщины основного металла; непровара по кромке длиной 300 мм и высотой 7 %; одного шлакового включения с максимальным размером 5 мм и высотой 10 %; цепочки пор длиной 25 мм с диаметром поры 2 мм и высотой 5 %. Трубопроводы

    Рентгеновские лучи, представляющие собой электромагнитные колебания с очень короткой волной, способны проникать сквозь непрозрачные предметы и металлы.

    Изготовляемые отечественной промышленностью рентгеновские аппараты для контроля сварных соединений в цеховых условиях предназначены для просвечивания сварных швов при сварке металла толщиной до 80-100 мм.

    Рентгеновским просвечиванием можно выявить в сварном шве трещины, непровары, газовые поры, шлаковые включения, величина которых составляет не менее 2% толщины просвечиваемого металла. Все эти дефекты при просвечивании фиксируются на фотопленку.

    При контроле сварных соединений из легких сплавов (алюминий, дюралюминий и др.) вместо фотопленки применяется флюоресцирующий экран.

    Схема рентгеновского просвечивания показана на фиг. 111.

    Для получения снимка пучок рентгеновских лучей направляется от трубки на шов, а снизу шва устанавливается кассета с рентгеновской пленкой.

    Все стыковые соединения просвечиваются в перпендикулярном к шву направлении и в направлении плоскости скоса кромок.

    Качество сварных соединений оценивается в соответствии с ГОСТ 7512 «Методы контроля рентгенографированием и гаммаграфированием».

    По ренгеноснимкам (или гаммоснимкам) определяются количество внутренних дефектов в шве и околошовной зоне, их характер и размеры. Для сокращенного обозначения вида дефекта применяются следующие знаки:

    П - газовые включения (поры);

    Ш - шлаковые включения;

    Н - непровары;

    НС - непровар сплошной;

    Тп - трещины поперечные;

    Трп - трещины продольные;

    Тр - трещины радиальные.

    По характеру распределения дефекты объединяются в группы:

    группа А - отдельные дефекты;

    группа Б - цепочка дефектов;

    группа В - скопление дефектов.

    Признаки распределения дефектов по группам:

    К отдельным дефектам (группа А) относятся те дефекты, которые по своему расположению не образуют цепочки или скопления;

    К цепочке дефектов (группа Б) относятся дефекты, расположенные на одной линии в количестве более трех с расстоянием между ними равным трехкратной величине дефектов или менее ее;

    К скоплению дефектов (группа В) относятся дефекты с групповым расположением в количестве более трех. Расстояние между ними равно трехкратной величине и менее.

    Размеры дефектов указываются в миллиметрах. При наличии группы дефектов одного вида, но разных размеров указывается средний или преобладающий размер. Если выявлены дефекты, размеры которых значительно превышают средний или преобладающий, то они отмечаются отдельно.

    В заключении по рентгеноснимкам каждая группа дефектов указывается отдельно и обозначается следующими знаками:

    буквой сокращенного названия дефекта;

    буквой, определяющей группу дефектов;

    цифрой, указывающей размер дефекта;

    цифрой, которая определяет количество дефектов или протяженность дефектного участка шва.

    Если на снимке не обнаружены дефекты по какой-либо группе или по всем группам, то этот результат в заключении указывается соответствующим буквенным обозначением и знаком нуль (0).

    Например, на рентгеноснимке, сделанном на участке шва длиной 150 мм, обнаружены такие дефекты: цепочка из пор размером в среднем 1,5 мм на протяжении 45 мм, 7 шлаковых включений размером по 3 мм и две продольные трещины по 10 мм, непровара шва нет. В заключении по снимку эти результаты записываются в таком виде: ПБ-1,5-45; ША-3-7; Тпр-10-2; Н-0.

    Результаты каждого рентгеноконтроля шва заносятся в специальный журнал.

    Оценку по качеству сварного шва производят в зависимости от регламентированных (допускаемых) дефектов, которые указаны в технических условиях или других руководящих материалах. Безусловно, годными считаются такие соединения, в которых все дефекты будут обозначены нулевыми знаками.

    Оценка качества сварных швов может также производиться методом сравнения контрольных рентгеноснимков с эталонными снимками. При этом эталонные снимки должны быть утверждены соответствующими ведомствами.

    Просвечивание гамма-лучами радиоактивных элементов. Гамма-лучи, получающиеся вследствие распада радиоактивных элементов, имеют высокую проникающую способность. Благодаря более короткой длине волны гамма-лучи способны просвечивать сталь на толщину до 300 мм.

    В СССР для просвечивания сварных швов используются радий, радиоактивный кобальт, цезий и др. Радиоактивные вещества упаковываются в ампулы. Для хранения и переноски их применяются свинцовые контейнеры.

    На фиг. 111,б показана схема просвечивания сварных швов гамма-лучами. На испытываемый участок сварного шва устанавливается кассета с рентгеновской пленкой, а с другой стороны - ампула на расстоянии 300-600 мм. Выявленные дефекты фиксируются на пленке.

    Гамма-лучи действуют во всех направлениях с одинаковой силой. Это свойство используется для просвечивания за одну экспозицию одновременно нескольких деталей, расположенных по кругу.

    Гамма-лучи дают возможность выявлять дефекты размером от 2 до 5% от толщины просвечиваемого материала.

    Оценка качества сварных соединений производится по ГОСТ 7512.

    По сравнению с рентгеновскими лучами просвечивание гамма-лучами обладает следующими преимуществами: большая проникающая способность; простота съемки; простота аппаратуры; возможность просвечивания в полевых условиях; так как не нужен источник энергии; возможность просвечивания в узких труднодоступных местах.

    Недостатки: требуется большое время экспозиции, меньшая чувствительность к выявлению дефектов при малых толщинах материала (до 50 мм).

    Понравилось? Лайкни нас на Facebook