Радиоконструктор RI0142. Частотомер с функцией тестера кварцевых резонаторов. Прибор для проверки частоты кварцев - измерительная техника - инструменты Тестер кварцевых резонаторов на pic

Сразу хотелось бы сказать, что проверить кварцевый резонатор с помощью мультиметра не получится . Для проверки кварцевого резонатора с помощью осциллографа необходимо подключить щуп к одному из выводов кварца, а земляной крокодил к другому, но такой способ не всегда даёт положительный результат , далее описано почему.
Одна из основных причин выхода из строя кварцевого резонатора - банальное падение, поэтому если перестал работать пульт от телевизора, брелок от сигнализации автомобиля, то первым делом необходимо его проверить. Проверить генерацию на плате не всегда получается потому, что щуп осциллографа имеет некоторую ёмкость, которая обычно составляет около 100pF, то есть, подключая щуп осциллографа, мы подключаем конденсатор номиналом 100pF. Так как номиналы ёмкостей в схемах кварцевых генераторов составляют десятки и сотни пикофарад, реже нанофарады, то подключение такой ёмкости вносит значительную ошибку в расчётные параметры схемы и соответственно может привести к срыву генерации. Ёмкость щупа можно уменьшить до 20pF, если установить делитель на 10, но и это не всегда помогает.

Исходя из выше написанного можно сделать вывод, что для проверки кварцевого резонатора нужна схема, при подключении к которой щупа осциллографа не будет срываться генерация, то есть схема должна не чувствовать ёмкость щупа. Выбор пал на генератор Клаппа на транзисторах, а для того чтобы не срывалась генерация к выходу подключён эмиттерный повторитель.


Если поставить плату на просвет видно, что с помощью сверла получаются аккуратненькие пятачки, если сверлить шуруповёртом, то почти аккуратненькие). По сути это тот же монтаж на пятачках, только пятачки не наклеиваются, а сверлятся.


Фотографию сверла можно увидеть ниже.


Теперь давайте перейдём непосредственно к проверке кварцев. Сначала возьмём кварц на 4.194304MHz.


Кварц на 8MHz.


Кварц на 14.31818MHz.


Кварц на 32MHz.


Хотелось бы несколько слов сказать про гармоники, Гармоники - колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может!!!

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.

Частотомер - полезный прибор в лаборатории радиолюбителя (особенно, при отсутствии осциллографа). Кроме частотомера лично мне часто недоставало тестера кварцевых резонаторов - слишком много стало приходить брака из Китая. Не раз случалось такое, что собираешь устройство, программируешь микроконтроллер, записываешь фьюзы, чтобы он тактировался от внешнего кварца и всё - после записи фьюзов программатор перестаёт видеть МК. Причина - "битый" кварц, реже - "глючный" микроконтроллер (или заботливо перемаркированый китайцами с добавлением, например, буквы “А" на конце). И таких неисправных кварцев мне попадалось до 5% из партии. Кстати, достаточно известный китайский набор частотомера с тестером кварцев на PIC-микроконтроллере и светодиодном дисплее с Алиэкспресса мне категорически не понравился, т.к. часто вместо частоты показывал то ли погоду в Зимбабве, то ли частоты "неинтересных" гармоник (ну или это мне не повезло).

Набор компонентов для сборки частотомера с функцией тестера кварцевых резонаторов.
Простой и недорогой, разработанный на базе PIC микроконтроллера с возможностью учитывать при измерениях частотный сдвиг супергетеродинных приемников с пятизначным светодиодным индикатором, удобный и интуитивно понятный.

Разрешение дисплея автоматически переключается, чтобы обеспечить максимальную точность считывания значения при 5-тизначном индикаторе.

Так же автоматически изменяется длительность измерения (gate time) в течение которого происходит подсчет импульсов на входе
Если частотомер используется для измерений в коротковолновых приемниках или передатчиках вам может потребоваться добавить или вычесть значение частотного сдвига из измеряемой частоты. Частота смещения во многих случаях равна промежуточной частоте, поскольку частотомер обычно подключается к генератору переменной частоты приемника.

Для измерения частоты генерации кварца просто подключите его к разъему с названием «Испытываемый кварц»

Основные возможности:

• Диапазон измерения частоты: 1 Гц - 50 МГц
• Измерение кварцев общего применения в частотой генерации в диапазоне: 1МГц - 50 МГц
• Автоматическое переключение диапазонов
• Программируемые настройки прибавляемой и вычитаемой величины частотного сдвига при настройках и измерениях в УКВ приемниках и передатчиках.
• Режим энергосбережения при питании от автономного источника тока
• Возможно использование 5 В от USB интерфейса
• Минимальное количество компонентов, простая сборка и настройка

Функции

Разрешение дисплея автоматически переключается, чтобы обеспечить максимальную точность считывания значения при 5-
тизначном индикаторе. Так же автоматически изменяется длительность измерения (gate time) в течение которого происходит подсчет импульсов на входе

Добавление или вычитание частотного сдвига. Если частотомер используется для измерений в коротковолновых приемниках или передатчиках вам может потребоваться добавить или вычесть значение частотного сдвига из измеряемой частоты. Частота смещения во многих случаях равна промежуточной частоте, поскольку частотомер обычно подключается к генератору переменной частоты приемника.
Для этой цели в прошивке частотомера реализован режим программирования (setup mode) Структура меню частотомера приведена слева и показывает, как

Попасть в меню программирования и выбрать нужную функцию.
Чтобы войти в режим программирования нажмите и удерживайте кнопку на устройстве, пока на индикаторе не отобразится "ProG"
Затем еще раз нажмите на кнопку. Вы окажетесь в первом пункте меню. Для движения дальше по меню кратковременно нажимайте на кнопку (не более 1 сек.). Для выполнения пункта меню держите кнопку нажатой дольше (более секунды).

Функции меню:

· "Quit": выход без сохранения настроек.
· "Add": сохраняет только что измеренное значение частоты, которое будет использоваться для добавления в дальнейших измерениях.
· "Sub": сохраняет только что измеренное значение частоты, которое будет использоваться для вычитания в дальнейших измерениях.
· "Zero": Устанавливает частоту сдвига в «ноль», таким образом, индикатор будет отображать измеренную частоту без сдвига.
Предварительно установленное значение сдвига будет утрачено.
· "Table": Позволяет вам выбрать предустановленное значение сдвига из таблицы. Таблица уже находится в энергонезависимой памяти микроконтроллера, вы можете найти в ней несколько распространенных значений. Последовательно вам будет предлагаться 455.0 (kHz), 4.1943 (MHz), 4.4336 (MHz), 10.700 (MHz). После выбора нужного значения нажмите продолжительно на кнопку – вы вернетесь в
главное меню к возможности выбрать "Add" или "Sub".
· "PSave" / "NoPSV": включает или выключает режим энергосбережения. В режиме энергосбережения, индикатор выключается через 15 секунд, если нет изменения частоты и автоматически включается, если частота изменилась более чем значение младшего разряда.

Что потребуется для сборки

Набор поставляется в виде набора компонентов, печатной платы и инструкции по сборке, поэтому Вам понадобятся:
• паяльник и немного припоя с флюсом или спиртовым раствором канифоли
• пинцет и бокорезы
• мультиметр
• защитные очки
• час-два свободного времени

Порядок сборки

• Компонентов немного, их места на плате подписаны, сборка не должна вызвать сложностей
• Разложите компоненты по группам, монтаж начинайте с наиболее мелких и низких компонентов, постепенно переходя к более крупным
• места установки компонентов на плате подписаны так же как и сами компоненты, все компоненты устанавливаются на одной - верхней стороне платы
• у панелек для микросхем и самих микросхем при установке надо соблюсти направление установки "ключа" - небольшой вырез или точка на одной из боковых сторон
• пайку производите аккуратно, не перегревая место пайки и сами компоненты, при этом не скупитесь на канифоль, пайки должны обтекать ножки компонентов равномерно и гладко.
• удалите бокорезами лишние части ножек компонентов с обратной стороны платы и по возможности промойте плату спиртом.

Подготовка к эксплуатации

• Если сборка произведена без ошибок, то прибор начинает работать сразу

Меры предосторожности

• Используйте защитные очки при монтаже для защиты глаз от травм обрезками ножек или горячим припоем
• Не перегревайте места пайки выше разумного предела, необходимого для качественной пайки, используйте канифоль или ее спиртовой раствор для лучшей обтекаемости припоем
• При включении прибор должен лежать на диэлектрической поверхности, например, на листе картона, во избежание короткого замыкания через проводящую поверхность

4 тестера кварцевых резонаторов


Правильное функционирование кристалла кварца можно проверить, включив его в схему генератора или фильтра. На рисунке 1 – схема, разработанная К.Тавернье (Франция).
Поскольку частоты кристаллов, с которыми приходится иметь дело, могут перекрывать очень широкий диапазон от 1 до 50 МГц, схема представляет собой широкодиапазонный генератор. На транзисторе Т1 собран апериодический генератор.
Если тестируемый кварц исправен, то на эмиттере Т1 будет присутствовать псевдосинусоидальный сигнал на основной частоте кристалла. Этот сигнал выпрямляется диодами D2, D1 и, когда напряжение на конденсаторе С4 достигнет величины, достаточной для открытия транзистора Т2, начинает светиться светодиод в коллекторной цепи Т2. Это говорит об исправности кварца. Для определения частоты колебаний можно подсоединить частотомер или осциллограф параллельно резистору R2.


На рисунке 2 – звуковой испытатель из рубрики «за рубежом» журнала РАДИО №12, 1998г.
Микросхема 4060 представляет собой двоичный счётчик, в составе которого имеется генератор. Если собрать эту схему, генерация возникает на основной частоте резонатора. Затем делители микросхемы понижают частоту до звуковой, которую слышно в низкоомной звуковой головке. Опытный образец испытателя уверенно работал с резонаторами от 1 до 27 МГц. В последнем случае частота на выходе была около 6,6 кГц. Отечественный аналог 4060 – микросхема типа 1051ХЛ2.


На рисунке 3 – тестер, который я слепил на скорую руку лет 5-6 назад. Похожих схем в литературе и интернете полно. В этой схеме заводятся кварцы 1…30 МГц. По показаниям микроамперметра можно оценить активность кварца.
Следует иметь в виду, что кварцы с частотой выше 20 МГц – как правило, гармониковые. Поэтому, при испытании кварца на 32 МГц, он «завёлся» на своей основной частоте 10,67 МГц, что и показал частотомер.

Как спаял, так и хранится он в коробочке, плату и корпус делать облом.

Широкодиапазонный генератор, конечно, универсален и, в большинстве случаев, полезен. Однако малоактивный кварц может в нём не завестись. Но не следует спешить его выбрасывать. В этом случае можно подкорректировать величины ёмкостей С1 и С2, как рекомендуется в [Радиохобби 1999№3с22-23]. Для наилучших условий возбуждения, С1 должна быть приблизительно численно равна длине волны в метрах, генерируемой кварцем (на первой, основной гармонике). Например, если кварц на 1 МГц, то С1=300 пФ. Для лучшего самовозбуждения, С2 может выбираться в 1,5…2 раза меньше ёмкости С1. Для С3 ёмкость примерно равна С2 (Рис.4)


  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

  • 29.09.2014

    Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов — задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора задается кв. резонатором Q1 на частоту 27 МГц. Нагружен генератор на контур …

  • 28.09.2014

    Параметры усилителя: Суммарный диапазон воспроизводимых частот 12…20000Гц Максимальная выходная мощность СЧ-ВЧ каналов(Rн=2,7Ом, Uп=14В) 2*12Вт Максимальная выходная мощность НЧ канала(Rн=4Ом, Uп=14В) 24Вт Номинальная мощность СЧ-ВЧ каналов при КНИ 0,2% 2*8Вт Номинальная мощность НЧ канала при КНИ 0,2% 14Вт Максимальный ток потребления 8 А В данной схеме А1 — ВЧ-СЧ усилитель, а …

  • 30.09.2014

    УКВ-приемник работает в диапазоне 64-108МГц. Схема приемника основана на 2-х микросхемах: К174ХА34 и ВА5386, дополнительно в схеме присутствуют 17 конденсаторов и всего 2-а резистора. Колебательный контур один, гетеродинный. На А1 выполнен супергетеродинный УКВ-ЧМ без УНЧ. Сигнал от антенны поступает через С1 на вход ПЧ микросхемы А1(вывод12). Настройка на станцию производится …

Понравилось? Лайкни нас на Facebook