Параметрические стабилизаторы напряжения и тока. Устройство и принцип работы. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне Как подобрать несколько стабилитронов на необходимое напряжение

Любой электронной схеме требуется стабилизированное напряжение, необходимое для питания входящих в её состав активных элементов (транзисторов, микросхем и т. п.). Несмотря на большое разнообразие видов линейных источников в основе всех их лежит классический параметрический стабилизатор напряжения (смотрите рис. ниже).

При построении большинства таких устройств используется нелинейный полупроводниковый элемент – диод, называемый в этом случае стабилитроном.

Порядок включения

Классический стабилизатор на стабилитроне относится к простейшему виду устройств данного класса и является самым дешёвым и лёгким в исполнении. Своеобразная «расплата» за эту простоту – невысокий стабилизирующий эффект, сильно зависящий от величины нагрузки и наблюдаемый в очень узком диапазоне.

Входящий в состав стабилизатора напряжения полупроводниковый элемент (стабилитрон) представляет собой выпрямительный диод, включенный в обратном направлении. Благодаря этому, рабочая точка элемента может быть установлена на нелинейном участке вольтамперной характеристики (ВАХ) с резко уходящей вниз ветвью.

Дополнительная информация. Её точное положение задаётся величиной балластного резистора Rо (смотрите схему выше).

С примером типовой вольтамперной характеристики стабилитрона можно ознакомиться на приводимом ниже рисунке.

Принцип работы параметрического стабилизатора на стабилитроне (ПСН) неразрывно связан с видом обратной ветви характеристики стабилитрона, имеющей следующие особенности:

  • При значительных изменениях тока через прибор напряжение на этом участке колеблется совсем в небольших пределах;
  • Путём выставления величины токовой составляющей можно установить рабочую точку по центру обратной ветви;
  • За счёт выбора напряжения стабилизации в фиксированной зоне ВАХ удаётся расширить динамический диапазон изменения тока стабилитрона (или его дифференциального сопротивления).

Обратите внимание! Именно из-за возможности выставления фиксированных параметров в этой схеме она получила своё название – параметрическая.

Принцип работы

Суть работы стабилизатора напряжения удобнее всего пояснить на примере диода, включённого в цепь постоянного тока. Когда напряжение на нём имеет прямую полярность (плюс подключён к аноду, а минус – к катоду), полупроводниковый переход смещён в проводящем направлении и пропускает ток.

При обратном порядке подачи полярности n-p переход закрыт и поэтому тока практически не проводит. Но если продолжать увеличивать обратное напряжение между электродами, то в соответствии с его ВАХ можно достичь точки, в которой диод вновь начинает пропускать поток электронов (но уже в другую сторону за счёт пробоя перехода).

Важно! Полупроводниковый элемент в этом случае работает в режиме обратных напряжений, значительно превышающих по величине прямое падение на нём (0,5-0,7 Вольта).

Основные параметры

При изучении функционирования параметрического стабилизатора напряжения особое значение придаётся техническим характеристикам самого регулирующего прибора. К ним следует отнести:

  • Напряжение стабилизации, определяемое как падение потенциала на нём при протекании тока средней величины;
  • Максимальное и минимальное значения тока, пропускаемого через обратно смещенный переход;
  • Допустимая рассеиваемая мощность на приборе Pmax.;
  • Проводимость перехода в динамическом режиме (или дифференциальное сопротивление стабилитрона).

Последний параметр определяется как отношение приращения напряжения ΔUCT к вызвавшему его изменению стабилизирующего тока ΔICT.

Относительно первых двух параметров следует заметить, что для разных образцов полупроводниковых диодов они могут сильно различаться по своей величине (в зависимости от мощности прибора). Напряжение стабилизации для большинства современных стабилитронов варьируется в диапазоне от 0,7 до 200 Вольт.

Допустимая мощность рассеяния определяется уже перечисленными ранее параметрами и также сильно зависит от типа элемента. Это же можно сказать и о дифференциальном сопротивлении, в определённой мере влияющем на эффективность процесса стабилизации.

Схема параметрического стабилизатора

Особенности схемы

Полное схемное представление стабилизатора параметрического типа, в котором стабилитрон выполняет функцию опорного элемента, приводится на размещённом ниже рисунке.

Эту схему можно рассматривать как делитель напряжения, состоящий из резистора R1 и стабилитрона VD с подключённой в параллель нагрузкой RН.

При изменениях входного потенциала соответственно будет меняться и ток через стабилитрон; при этом величина напряжения на нём (а значит и на нагрузке) останется практически неизменной. Её значение будет соответствовать напряжению стабилизации при колебаниях входного тока в некоторых пределах, определяемых характеристиками диода и величиной нагрузки.

Расчёт рабочих параметров

Исходными данными, согласно которым осуществляется расчет стабилизатора параметрического типа, являются:

  • Подаваемое на вход питание Uп;
  • Напряжение на выходе Uн;
  • Выходной номинальный ток IH=Iст.

С учётом этой информации рассчитаем искомую величину, воспользовавшись функцией онлайн-калькулятора, например.

В качестве примера положим:

Uп=12 Вольт, Uн=5 Вольт, IH=10 мА.

Исходя из этих данных, вводимых предварительно в онлайн-калькулятор или вручную, выбираем стабилитрон типа BZX85C5V1RL с напряжением стабилизации 5,1 Вольт и дифференциальным сопротивлением порядка 10 Ом. С учётом этого вычисляем величину балластного сопротивления R1, определяемую следующим образом:

R1= Uо–Uн/Iн+Iст =12-5/0,01+0,01= 350 Ом.

Таким образом, весь расчет параметрического стабилизатора сводится к определению номинала балластного резистора R1 и выбору типа стабилитрона (исходя из того, на какое рабочее напряжение он рассчитан).

Возможности по увеличение мощности

Выходная мощность стабилизатора параметрического типа определяется максимальным током стабилитрона и его допустимой мощностью Pmax, которую при желании можно увеличить. Для этого следует дополнить схему транзисторным элементом, включаемым параллельно или последовательно с нагрузкой. Соответственно этому различают стабилизаторы параллельного и последовательного типа, в которых транзистор выполняет функцию усилителя постоянного тока.

Рассмотрим каждую их этих схем более подробно.

Параллельный стабилизатор

В схеме стабилизатора параллельного типа транзистор используется как эмиттерный повторитель, включённый параллельно нагрузке (смотрите рисунок ниже).

Дополнительная информация. В этой схеме резистор R1 может располагаться как со стороны коллектора, так и в эмиттере транзистора.

Напряжение на нагрузочном резисторе R н составляет:

Uн=Uст+Uбэ (транзистора).

Схема работает по принципу отвода излишков тока через открытый переход К-Э транзистора, на базе которого постоянно присутствует напряжение (Uст). В этой схеме IСТ является одновременно базовым током транзистора, вследствие чего его величина в нагрузке может в h21e раз превышать исходное значение, то есть транзистор в данном случае работает как усилитель по току.

Последовательный стабилизатор

ПСН, собранный по последовательной схеме, представляет собой тот же эмиттерный повторитель на транзисторе VT, но с сопротивлением нагрузки Rн, включённым последовательно с переходом К-Э (смотрите рисунок).

Выходное напряжение устройства в данной ситуации равно:

Uн=Uст-Uбэ.

В этой схеме любые колебания тока в нагрузке приводят к противоположным по знаку изменениям напряжения на базе транзистора. Подобная зависимость вызывает открывание или закрывание перехода Э-К, что означает автоматическую стабилизацию выходного напряжения.

В заключение описания отметим, что как в последовательной, так и в параллельной схеме ПСН стабилитрон используется в качестве источника опорного напряжения, а транзистор – как усилитель тока.

Видео

где напряжение на эмиттерном переходе транзистора, которое определяется по входной ВАХ.

Номинальное напряжение стабилитрона:

По справочно-информационной литературе выбираем тип стабилитрона с возможно меньшим динамическим сопротивлением и с соблюдением следующих условий:

условие (12) выполняется.

условие (13) выполняется.

Выбираем стабилитрон Д816Г. Стабилитрон кремниевый планарный средней мощности. Предназначен для стабилизации номинального напряжения в диапазоне от 35 В до 43В. выпускается в металлическом корпусе с жесткими выводами. Корпус стабилитрона в рабочем режиме служит отрицательным электродом(катодом).

Масса стабилитрона с комплектующими деталями не более 6 г.

Таблица 6. Параметры стабилитрона Д816Г.

номинальное напряжение стабилизации;

мощность, рассеиваемая стабилитроном.

динамическое сопротивление стабилитрона;

максимальный и минимальный ток стабилитрона при четком напряжении пробоя.

Резистор R5 задает уровень тока через стабилитрон. Обычно сопротивление резистора выбирают таким, чтобы рабочее значение минимального тока стабилитрона равнялось:

минимальное напряжение на входе фильтра.

Максимальная мощность, выделяемая на резисторе:

максимальное напряжение на выходе фильтра.

Принимаем номинальное сопротивление резистора из условия:

условие выполняется.

Выбираем резистор R5-С2-14-2-180 Ом

Расшифруем запись типа резистора:

С2-14 - резистор с металлодиэлектрическим и металлооксидным слоем предпазначен для работы в высокочастотных электрических цепях постоянного, переменного и импульсного тока.

  • 2- номинальная мощность в ваттах;
  • 180 Ом - номинальное сопротивление и буквенное обозначение единицы измерения;
  • 5% - допустимое отклонение сопротивления резистора от номинального в процентах.

Проверяем стабилитрон на максимальный и минимальный токи и максимальную мощность:

Условия выполняются.

Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации

К ст U = (ΔU вх /U вх) / (ΔU вых /U вых).

Простейшим стабилизатором напряжения является параметрический, схема которого представлена на рис. 1.6.

Рис. 1.6. Параметрический стабилизатор напряжения без термокомпенсации

Расчет параметрического стабилизатора обычно сводится к расчету сопротивления балластного резистора R о и выбору типа стабилитрона.

Основными электрическими параметрами стабилитрона являются:

U ст – напряжение стабилизации;

I ст.макс – максимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

I ст.мин – минимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

R д – дифференциальное сопротивление на рабочем участке вольт-амперной

характеристики.

Методику расчета рассмотрим на примере.

Дано: U вых = 9 В;I н = 10 мА;ΔI н = ± 2 мА;ΔU вх = ± 10%U вх. .

Порядок расчета.

1. По справочнику выбираем стабилитрон типа Д814Б с параметрами

U ст = 9 В;I ст.макс = 36 мА;I ст.мин = 3 мА;R д = 10 Ом.

2. Рассчитаем необходимое входное напряжение по формуле

U вх =n ст U вых,

где n ст – коэффициент передачи стабилизатора.

Для оптимальных условий работы стабилизатора рекомендуется выбирать n ст в пределах от 1,4 до 2.

Примем n ст = 1,6 , тогдаU вх = 1,6 · 9 = 14,4 В.

3. Рассчитаем сопротивление балластного резистора R о

R о = (U вх –U вых) / (I ст +I н).

Ток I ст выбирают из следующих соображений:I ст ≥I н.

При одновременном изменении U вх на величинуΔU вх иI н на величинуΔI н ток стабилитрона не должен выходить за пределыI ст.макс иI ст.мин.

По этой причине обычно выбирают I ст из середины диапазона допустимых значений.

Принимаем I ст = 0,015 А.

Тогда R о = (14,4 – 9) / (0,015 + 0,01) = 216 Ом.

Выберем стандартное значение сопротивления резистора R о по параметрическому ряду Е24 (см. приложение 4).

Принимаем R о = 220 Ом.

Для выбора типа резистора необходимо рассчитать рассеиваемую на корпусе резистора мощность

Р = I 2 R о; Р = (25· 10 -3) 2 · 220 = 0,138 Вт.

Принимаем стандартное значение мощности рассеяния на резисторе 0,25 Вт.

Выбираем тип резистора МЛТ-0,25-220 Ом ± 10 %.

4. Произведем проверку правильности выбора режима работы стабилитрона в схеме стабилизатора напряжения:

I ст.мин = (U вх –ΔU вх –U вых) /Rо – (I н +ΔI н);

I ст.мин = (14,4 – 1,44 – 9) · 10 3 / 220 – (10 + 2) = 6 мА;

I ст.макс = (U вх +ΔU вх –U вых) /Rо – (I н –ΔI н);

I ст.макс = (14,4 + 1,44 – 9) · 10 3 / 220 – (10 – 2) = 23 мА.

Если рассчитанные значения токов I ст.мин иI ст.макс выходят за пределы допустимых значений, то необходимо или выбрать другое значениеI ст, или изменить сопротивление резистораR о, или заменить стабилитрон.

5. Коэффициент стабилизации по напряжению для параметрического стабилизатора определяется по формуле:

К ст = (R о /R д + 1) /n ст,

К ст = (220 / 10 + 1) / 1,6 = 14,3.

6. Выходное сопротивление параметрического стабилизатора напряжения

R вых =R о = 10 Ом.

На рис. 1.7 представлена схема параметрического стабилизатора напряжения с температурной стабилизацией режима работы его основного элемента – стабилитрона.

Для повышения температурной стабильности выходного напряжения в этой схеме последовательно со стабилитроном включены несколько кремниевых диодов.

Температурный коэффициент напряжения (ТКН) диода по знаку противоположен ТКН стабилитрона, однако меньше по модулю. Поэтому для температурной компенсации U ст требуется несколько диодов. Кремниевые стабилитроны, включенные в прямом направлении также могут быть использованы для термостабилизации. Количество термостабилизирующих элементов определяют по отношению модуля ТКН стабилитрона к модулю ТКН элемента (диода). Результат деления округляется до целого числа.

Численные значения ТКН стабилитронов и диодов приведены в справочниках и выражены в %/ о С. Для кремниевых диодов, включенных в прямом направлении ТКН незначительно отличаются друг от друга для разных типов и находятся в пределах

1,4…1,7 мВ/ о С. Для германиевых диодов, например у Д7А – Д7Ж, величина ТКН составляет –1,9 мВ/ о С. Для выполнения расчетов термостабилизации в РГР-1 использовать диод Д7Ж, у которого ТКН составляет –1,9 мВ/ о С.

При этом следует иметь в виду, что при большом количестве термостабилизирующих диодов (три и более) необходимо учитывать прямое падение напряжение на них и динамическое сопротивление. Для диода Д7Ж прямое напряжение составляет 0,5 В, а динамическое сопротивление 2 Ом. Общее напряжение стабилизации определяется при этом как сумма напряжений стабилитрона и диодов, а общее динамическое сопротивление определяется как сумма динамических сопротивлений стабилитрона и диодов.

Расчет такого стабилизатора производится по методике, приведенной выше.

Рис. 1.7. Параметрический стабилизатор напряжения с термокомпенсацией

Примечание:

Последовательность расчета источника вторичного электропитания следующая – сначала выполняется расчет стабилизатора напряжения, затем сглаживающего фильтра и далее - выпрямительной схемы.

Принципиальную электрическую схему устройства выполнить в соответствии с ГОСТ и с учетом структурной схемы (рис 1.1)

Контрольная работа № 2

Расчет усилительного каскада на биполярном транзисторе

по схеме с общим эмиттером

В схеме выпрямительного устройства, рассмотренного на лекции №2 (рис. 3.1) для преобразования переменного напряжения сети в постоянное напряжение рассмотрены трансформатор, выпрямитель и сглаживающий фильтр. Напряжение на нагрузке поддерживается постоянным по значению с помощью стабилизатора Ст. Простейший стабилизатор напряжения – параметрический, в котором используются специальный диод – СТАБИЛИТРОН.

Стабилитрон имеет специфическую вольтамперную характеристику (ВАХ) в обратном включении (рис.3.2). При отрицательном напряжении ВАХ имеет достаточно протяженный участок, на котором напряжение изменяется мало, а ток изменяется значительно.

Рис. 3.2. Пример вольтамперной характеристики полупроводникового стабилитрона.

Стабилитрон используется в параметрическом стабилизаторе напряжения (рис.3.3а).


Рис. 3.3. Параметрический стабилизатор напряжения.

а) электрическая схема стабилизатора,

б) линейная схема замещения для малых изменений токов и напряжений (R диф =ΔU ст. / ΔI ст = ΔU Н / ΔI ст –дифференциальное сопротивление)

в) графическое представление состояния стабилитрона и принципа стабилизации напряжения на нагрузке (ΔU Н <<ΔU вх) при изменении напряжения U вх и большом сопротивлении нагрузки (R Н >> R диф).

Принцип стабилизации заключается в следующем. Напряжение на стабилитроне, т.е. на нагрузке, остается постоянным из-за изменения тока стабилитрона и вызванного этим изменения напряжения на балластном резисторе.

Схема на рис.3.3а описывается нелинейной системой уравнений:

I 0 - I ст - I н = 0 (1)

U ст (I ст) - R н I н = 0 (2)

- U вх + R б I 0 + R н I н = 0 (3)

Преобразуем систему к одному уравнения относительно тока I ст.

Из (1) имеем I н = I 0 - I ст, тогда из (3) следует

- U вх + R б I 0 + R н (I 0 - I ст) = 0 ,

отсюда I 0 =(R н I ст + U вх) / (R б + R н) и из (2) получаем

U ст (I ст) = R н [ (R н I ст + U вх) / (R б +R н) - I ст ]. (4)

Этот же результат можно получить, если применить к схеме на рис.3.3а преобразование по методу эквивалентного активного двухполюсника, в который включим источник входного напряжения U вх, балластный резистор R б и приемник R н (рис. 3.4).

Рис. 3.4. Преобразование части схемы методом эквивалентного активного двухполюсника.

Эквивалентный источник имеет

ЭДС E экв = U вх R н / ( R н + R б) и

сопротивление R экв = R б R н / ( R н + R б).

После эквивалентного преобразования схема рис.3.3а приобретает вид (рис.3.5)

Из схемы на рис.3.5 получаем уравнение состояния параметрического стабилизатора:

U ст (I ст) = E экв - R экв I ст (5)

Если в (5) подставить выражения вместо E экв и R экв, то получим уравнение (4). Применение метода эквивалентного источника позволяет лучше представить физически принцип действия стабилизатора, зависимость его свойств от параметров элементов.

Уравнение (4) пригодно для анализа свойств параметрического стабилизатора при любых параметрах элементов.

Положим (наиболее частый случай), что сопротивление нагрузки R н значительно больше сопротивления балластного резистора R б. Тогда сопротивление нагрузки можно не учитывать и в схеме виден делитель входного напряжения из балластного резистора R б и стабилитрона VD (рис.3.3а). Состояние цепи устанавливается в соответствие с рис.3.3в в точке A , где пересекаются ВАХ стабилитрона и прямая линия 1, отсекающая на осях отрезки U вх1 и U вх1 /R б. При увеличении входного напряжения до U вх2 (линия 2) увеличивается ток стабилитрона (рабочая точка A ’), увеличивается напряжение на R б, а напряжение на нагрузке соответственно увеличивается на ΔU н. При этом, как видно из графиков ΔU н << ΔU вх (R диф <<R б).

Для получения простых соотношений для оценки качества параметрического стабилизатора получим линейную его схему замещения с помощью уравнения (5).

Приближенно, если рабочая точка А стабилитрона находится на участке стабилизации, ВАХ стабилитрона на участке стабилизации можно заменить прямой линией с угловым коэффициентом R диф =ΔU ст. / ΔI ст = ΔU Н / ΔI ст:

U ст (I ст) = U 0 + R диф I ст

С учетом этой линеаризации уравнение (5) можно переписать:

U 0 + R диф I ст =E экв -R экв I ст (6).

Здесь E экв = R Н U вх /(R Н + R Б) и R экв = R Б R Н /(R Б + R Н).

Из (6) следует уравнение, если учесть, что R экв >> R диф:

I ст = (E экв - U 0)/ (R экв + R диф) =(E экв - U 0)/ R экв (7).

Подставим сюда выражение для E экв и получим

I ст = (R Н U вх /(R Н + R Б) - U 0)/ R экв = U вх /R Б - U 0 / R экв

и напряжения на нагрузке принимает вид:

U н =U ст (I ст)=U 0 + R диф (U вх /R Б - U 0 / R экв) (7)

Отсюда следует, что при изменениях входного напряжения:

ΔU н =(dU ст /dU вх) * Δ U вх = R диф /R б * Δ U вх (8)

Отношение приращений напряжения на нагрузке и на входе параметрического стабилизатора равно:

ΔU н /Δ U вх = R диф /R б (8)

Если изменяется сопротивление нагрузки, то

U н = U 0 + R диф [U вх /R Б - U 0 (R Б + R Н)/ (R Б R Н)] (9)

Из уравнения (9) следует, что при изменениях сопротивления нагрузки так же будет достигаться эффект стабилизации напряжения на нагрузке

ΔU н =(dU ст /dR Н) * Δ R Н = R диф / R 2 н * U 0 Δ R Н

В практических случаях параметры схемы и стабилитрона подбираются таким образом, чтобы рабочая точка на в.а.х. стабилитрона перемещалась в пределах участка стабилизации (I ст.мин ,I ст.макс) при необходимом U ст. , которые записаны в паспорте стабилитрона.

С помощью параметрического полупроводникового стабилизатора напряжения можно получить коэффициент стабилизации, который равен отношению относительных изменений входного и выходного напряжений:

K ст. = (ΔU вх /U вх)/ (ΔU вых /U вых) <=100.

Во многих случаях это значение оказывается недостаточным и тогда применяются более сложные «компенсационные стабилизаторы напряжения», содержащие транзисторы.

Заметим так же, что в параметрическом стабилизаторе напряжения нагревание балластного резистора приводит к потерям энергии. Поэтому к.п.д. параметрического стабилизатора напряжения не превышает 30%.

Демонстрация ВАХ реального стабилитрона demo3_1 приведена на рис. 3.6

Рис. 3.6. К demo3_1.

Демонстрация работы параметрического стабилизатора напряжения demo3_2 приведена на рис. 3.7.

Рис. 3.7.К demo3_2.

Замечание.

Рассмотренный параметрический стабилизатор напряжения позволяет познакомиться с широко применяемым методом описания нелинейных схем с помощью линеаризованных схем замещения. Запишем систему уравнений (1)-(3), заменив в уравнении (2) ВАХ стабилитрона линеаризованным выражением:

I 0 -I ст -I н =0 (1а)

U 0 +R диф I ст -R н I н =0 (2а)

- U вх +R б I 0 +R н I н =0 (3а)

Для малых изменений токов и напряжений, вызванных изменением входного напряжения, отсюда следует:

ΔI 0 -ΔI ст -ΔI н =0 (9)

R диф ΔI ст -R н ΔI н =0 (10)

U вх +R б ΔI 0 +R н ΔI н =0 (11)

Этой системе уравнений соответствует схема замещения, приведенная на рис.3.3 б.

Параметрические стабилизаторы напряжения изготавливаются, как правило, с применением транзисторов , стабисторов и стабилитронов .

Данное устройство характеризуется невысоким КПД , вследствие чего используются в качестве модулей слаботочных схем, в которых имеются нагрузки не выше пары десятков миллиампер. Чаще всего они распространены в компенсационных стабилизирующих устройствах в роли опорных источников напряжения.

Параметрические стабилизаторы напряжения подразделяются на мостовые , однокаскадные и многокаскадные .

Принцип работы параметрических стабилизаторов напряжения

Представляем схему простого устройства данного типа, в основе которого находится стабилитрон:

  • I ст - электроток через стабилитрон
  • I н - электроток нагрузки
  • U вых =U ст - стабилизированное напряжение на выходе
  • U вх - нестабилизированное напряжение на входе
  • R 0 - балластный (гасящий, ограничивающий) резистор

Основным свойством стабилитрона , на базе которого функционирует параметрический стабилизатор напряжения, является то, что U на нем в рабочем диапазоне вольт-амперной характеристики (от I ст min до I ст max) остается практически прежним. При этом изменения происходят от U ст min до U ст max , однако при этом принято подразумевать, что U ст min = U ст max = U ст).

Составленная схема параметрического стабилизатора напряжения дает понять, что коррекция тока нагрузки либо входного U не происходит (он сохраняет те же значения, что и на стабилитроне). Но при этом происходят изменения тока , проходящего через стабилитрон, а при изменении напряжения на входе выполняется корректировка тока, двигающегося по балластному резистору. В результате в балластном резисторе происходит гашение излишков напряжения на входе . Значение этого падения зависят от проходящего через него тока, который, в свою очередь, взаимосвязан с электротоком через стабилитрон. В силу этого любая коррекция электротока через стабилитрон напрямую отражается на величине падения U, отмечаемой в балластном резисторе .

Для описания принципа данной схемы используется уравнение:

U вх =U ст +IR 0 , где с учетом I=I ст +I н , получается, что

U вх =U ст +(I н +I ст)R 0 (1)

Для безукоризненного функционирования параметрического стабилизатора напряжения, которое определяется U на нагрузке в пределах от Uст min до Uст max, требуется следить за тем, чтобы через стабилитрон ток всегда оставался в границах от Iст min до Iст max . В частности, минимальные параметры тока через стабилитрон взаимосвязаны с минимальным U на входе и максимальной величиной электротока нагрузки.

Сопротивление балластного резистора устанавливается следующим образом:

R 0 =(U вх min -U ст min)/(I н max +I ст min) (2)

Максимальные параметры тока через стабилитрон взаимосвязаны с максимальным напряжением на входе и минимальной величиной электротока нагрузки Вследствие этого, используя уравнение (1), достаточно просто устанавливается область, в которой параметрический стабилизатор напряжения функционирует нормально.

Расчет области нормального функционирования стабилизирующего устройства:

∆U вх =U вх max –U вх min =U ст max +(I н min +I ст max)R 0 –(U ст min +(I н max +I ст min)R 0)

Выполнив перегруппировку этого выражения, получаем:

∆U вх =(U ст man -U ст min)+(I ст max -I ст min)R 0 –(I н min -I н min)R 0

Или иной метод:

∆U вх =∆U ст +∆I ст R 0 +∆I н R 0

Если взять во внимание незначительные отличия между минимумом и максимумом напряжения стабилизации (U ст min и U ст max), то значение первого слагаемого в правой части уравнения можно привести к нулю, что, в итоге, создает уравнение, описывающее область нормальный функционал прибора, приобретающее следующую форму:

∆U вх =∆I ст R 0 -∆I н R 0 (3)

В случае постоянного тока нагрузки либо с незначительными изменениями, применяемая для установления области нормального функционала устройства формула переходит в разряд элементарных :

∆U вх =∆I ст R 0 (4)

Расчет КПД параметрических стабилизаторов

На следующем этапе установим КПД рассматриваемого параметрического стабилизатора напряжения. Для его определения используется отношение мощности, которая уходит в нагрузку к мощности на входе в устройство:

КПД=U ст I н /U вх I.

С учетом I=I н +I ст получаем:

КПД=(U ст /U вх)/(1+I ст /I н)

Последняя приведенная формула показывает, что увеличение разницы между U на входе и выходе стабилизатора соответствует повышенному значению тока через стабилитрон, что существенно ухудшает КПД .

Пример оценки КПД

Для того, чтобы полноценно оценить «негативные» характеристики КПД, используем приведенные выше формулы, но при этом условно снизим напряжение до 5 Вольт . Для этого используем стандартный стабилитрон, например, КС147А. Согласно характеристикам ток в нем может изменяться в диапазоне от 3-х до 53-х мА .

Согласно условиям, нам требуется получить область нормального функционирования , ширина которой составляет 4 Вольта. Для этого необходимо взять балластный резистор в 80 Ом. С учетом постоянного тока нагрузки используем формулу 4 (иные параметры значительно «ухудшают» положение). На основе этого можно вычислить, применяя формулу 2 , расчет на какие значения тока в данной ситуации следует рассчитывать. В результате имеем 19,5 мА, причем КПД на таких условиях составит, в зависимости от U на входе, 14%-61% .

Для того, чтобы просчитать максимальные значения выходного тока в этих же условиях, необходимо поменять в них значение тока с постоянного на изменяющийся в диапазоне от нуля до I max . Тогда одновременно решая уравнения 2 и 3 , получаем R 0 =110 Ом , I max =13,5 мА . Таким образом, очевидно, что максимум тока стабилитрона в четыре раза превышает максимальное значение тока на выходе .

Недостатком параметрического стабилизатора можно назвать то, что напряжение на выходе отличается внушительной нестабильностью , напрямую завися от тока на выходе, что делает неприемлемым дальнейшую эксплуатацию прибора.

В итоге, с уверенностью можно сказать, что параметрический стабилизатор напряжения обладает лишь одним преимуществом - простым исполнением . Благодаря этому данные устройства продолжают свое существование и даже характеризуются массовым использованием в достаточно сложных схемах, как уже отмечалось, в роли опорного источника напряжения.

Понравилось? Лайкни нас на Facebook