Можно ли проверять полевой транзистор мультиметром? Проверка транзисторов без выпайки из схемы мультиметром. Основные способы проверки транзистора Простой прибор для проверки транзисторов своими руками

Это очередная статья, посвященная начинающему радиолюбителю. Проверка работоспособности транзисторов пожалуй самое важно дело, поскольку именно нерабочий транзистор является причиной отказа работы всей схемы. Чаще всего у начинающих любителей электроники возникают проблемы с проверкой полевых транзисторов, а если под рукой нет даже мультиметра, то проверить транзистор на работоспособность очень трудно. Предложенное устройство позволяет за несколько секунд проверить любой транзистор, независимо от типа и проводимости.

Устройство очень простое и состоит из трех компонентов. Основная часть - трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение.
Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т. п.) база через базовый резистор 100 ом идет на одну из выводов (левый или правый вывод) трансформатора, средняя точка трансформатора (отвод) подключен к плюсу питания, эмиттер транзистора подключается к минусу питания, а коллектор к свободному выводу первичной обмотки трансформатора.

Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора. Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание.
Устройство по идее является простейшим блокинг - генератором. Питание 3,7 - 6 вольт, отлично подойдет всего один литий - ионный аккумулятор от мобильного телефона, но с аккумулятора заранее нужно выпаять плату, поскольку эта плата отключает питание потребление тока превышает 800 мА, а наша схема может в пиках потреблять такой ток.
Готовое устройство получается достаточно компактным, можно поместить в компактный пластмассовый корпус, например от конфет типа тик- так и у вас будет карманный прибор для проверки транзисторов на все случаи жизни.

Этот несложный прибор, принципиальную схему которого вы видите на рисунке, предназначен для выявления скрытых дефектов и контроля обратного неуправляемого тока у биполярных и БСИТ транзисторов любой структуры, при рабочем напряжении 30...600 В. Им так же можно проверить обратный ток тринисторов, симисторов, диодов и определить рабочее напряжение газоразрядных ламп, варисторов, стабилитронов.

Известно, что проверка обычным мультиметром полупроводниковых приборов с максимальным рабочим напряжением более 50 В не дает полного представления о исправности детали, поскольку проверка происходит на слишком низком напряжении, что не позволяет однозначно судить о том, как эта деталь поведет себя при работе на номинальном для нее, значительно более высоком, напряжении.

Те, кому когда-нибудь приходилось ремонтировать телевизоры или мониторы, наверняка могут вспомнить случаи, когда совершенно новый мощный высоковольтный транзистор, установленный в модуль строчной развертки или импульсный источник питания, выходил из строя в первые же секунды работы.

Не редкость и "странное" поведение симисторов и тринисторов в фазовых регуляторах мощности, проявляющееся как мерцание подключенных в качестве нагрузки ламп накаливания. При этом, тиристор обычно начинает заметно греться даже при работе с нагрузкой мощностью 40 Вт.

Многочисленные пробники для проверки "низковольтных" биполярных транзисторов мало подходят для тестирования мощных высоковольтных транзисторов. Например, КТ840А, по справочнику, имеет максимальное напряжение 400 В, при сопротивлении резистора 100 Ом, включенного между его выводами базы и эмиттера, обратный ток коллектора при температуре 25°С не должен превышать 0,1.,3mA.

Понятно, что 3 mА, худшее значение, при котором транзистор может считаться условно исправным. Несколько из проверенных транзисторов этого типа вели себя "прилично" только до напряжения Э-К = 200...250 В. При дальнейшем повышении напряжения обратный ток резко увеличивался, превышая допустимый по справочным данным. При попытке установки в импульсный блок питания МП3-3, два таких транзистора вышли из строя в первые секунды работы, унося с собой "в могилу" по тринистору КУ112А.

Немало дефектных деталей встречается и среди диодов, которые тоже хорошо прозваниваются мультиметром, но на деле могут работать только при низком напряжении.

Следует учитывать, что если у проверяемого транзистора начальный неуправляемый ток хуже чем данный в справочнике, или заведомо хуже чем у других транзисторов этого же типа, то перед вами может быть не просто слегка некачественный экземпляр, а так называемый "перетёр" - когда под видом одного транзистора, вы приобретаете в таком же корпусе другой, но "непопулярный", с которого смыли старую маркировку и нанесли новую.

Необходимость в таком приборе возникает каждый раз при ремонте сварочного инвертора – необходимо проверить мощный IGBT или MOSFET транзистор на предмет исправности, либо подобрать к исправному транзистору пару, либо при покупке новых транзисторов, убедиться, что это не «перемаркер». Эта тема неоднократно поднималась на множестве форумов, но так и не найдя готового (испытанного) или кем то сконструированного прибора, решил изготовить его самостоятельно.
Идея состоит в том, что необходимо иметь какую-то базу данных различных типов транзисторов, с которой сравнивать характеристики испытываемого транзистора, и если характеристики укладываются в определенные рамки, то его можно считать исправным. Все это делать по какой-то упрощенной методике и простым оборудованием. Необходимую базу данных придется собирать конечно же самому, но это все решаемо.

Прибор позволяет:
- определить исправность (неисправность) транзистора
- определить напряжение на затворе, необходимое для полного открытия транзистора
- определить относительное падение напряжения на К-Э выводах открытого транзистора
- определить относительную емкость затвора транзистора, даже в одной партии транзисторов есть разброс и его косвенно можно увидеть
- подобрать несколько транзисторов с одинаковыми параметрами

Схема

Принципиальная схема прибора представлена на рисунке.


Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» - мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на - для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора.

Прибор очень прост по устройству и собран из общедоступных деталей. У меня в наличии был какой-то трансформатор с габаритной мощностью около 40Вт и напряжением на вторичной обмотке 12В. При желании, и в случае необходимости прибор можно питать от АКБ 12В / 0,6 Ач (например). Так же был в наличии .

Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.
Далее, изучая и адаптируя вольтметр, обнаружил интересную его особенность, если на его клеммы L0 и HI подать напряжение, превышающее его верхний порог измерения (1В), то табло просто тухнет и он ничего не показывает, но стоит снизить напряжение и все возвращается к нормальной индикации (это все при постоянном питании +5В между клеммами 0V и 5V). Я решил использовать эту особенность. Думаю, что очень многие цифровые «показометры» имеют такую же особенность. Взять, к примеру, любой китайский цифровой тестер, если в режиме 20В на него подать 200В, то ничего страшного не произойдет, он лишь только высветит «1» и все. Такие табло, подобные моему сейчас есть в продаже.
Возможные .

О работе схемы

Дальше расскажу о четырех интересных моментах по схеме и ее работе:
1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…
2. Применение стабилизатора тока на позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.
3. Применение 4 шт диодов IN4148 в цепи затвора испытуемого транзистора для медленного разряда емкости затвора транзистора, когда напряжение на его затворе уже снято, а транзистор находится еще в открытом состоянии. Они имеют какой-то ничтожный ток утечки, которым и разряжается емкость.
4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора.
Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно…

Корпус и компоновка

Далее был приобретен корпус и все эти комплектующие расположены внутри.



Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.

Ну и вот так это выглядит в работе:

Как пользоваться прибором

1. Включаем прибор в сеть, при этом начинает моргать светодиод, «показометр» не светится
2. Подключаем испытуемый транзистор (как на фото выше)
3. Устанавливаем ручку регулятора напряжения на затворе в крайнее левое положение (против часовой стрелки)
4. Нажимаем на кнопку «Откр» и одновременно потихоньку прибавляем регулятор напряжения по часовой стрелке до момента зажигания «показометра»
5. Останавливаемся, отпускаем кнопку «Откр», снимаем показания с регулятора и записываем. Это есть напряжение открытия.
6. Поворачиваем регулятор до упора по часовой стрелке
7. Нажимаем кнопку «Откр», зажжется «показометр», снимаем с него показания и записываем. Это есть напряжение К-Э на открытом транзисторе
8. Возможно, что за время, потраченное на записи, транзистор уже закрылся, тогда открываем его еще раз кнопкой, и после этого отпускаем кнопку «Откр» и нажимаем кнопку «Закр» - транзистор должен закрыться и «показометр» соответственно потухнуть. Это есть проверка целостности транзистора – открывается и закрывается
9. Опять открываем транзистор кнопкой «Откр» (регулятор напряжения в максимуме) и, дождавшись ранее записанных показаний, отпускаем кнопку «Откр» одновременно начиная подсчитывать количество вспышек (морганий) светодиода
10. Дождавшись потухания «показометра» записываем количество вспышек светодиода. Это и есть относительное время разряда емкости затвора транзистора или время закрытия (до увеличения падения напряжения на закрывающемся транзисторе более чем 1В). Чем это время (количество) больше, тем соответственно емкость затвора больше.

Дальше проверяем все имеющиеся транзисторы, и все данные сводим в таблицу.
Именно из этой таблицы и происходит сравнительный анализ транзисторов – фирменные они или «перемаркеры», соответствуют своим характеристикам или нет.

Ниже приведена таблица, которая получилась у меня. Желтым выделены транзисторы, которых не оказалось в наличии, но я ими точно когда то пользовался, поэтому оставил их на будущее. Безусловно, в ней представлены не все транзисторы, которые проходили через мои руки, кое что просто не записал, хотя пишу вроде всегда. Безусловно у кого то при повторении этого прибора может получиться таблица с несколько иными цифрами, это возможно, т.к цифры зависят от многих вещей: от имеющейся лампочки или трансформатора или АКБ, например.


Из таблицы видно, чем отличаются, транзисторы, например G30N60A4 от GP4068D. Отличаются временем закрытия. Оба транзистора применяются в одном и том же аппарате – Телвин, Техника 164, только первые применялись немного раньше (года 3, 4 назад), а вторые применяются сейчас. Да и остальные характеристики по ДАТАШИТ у них приблизительно одинаковы. А в данной ситуации все наглядно видно – все налицо.

Кроме того, если у Вас получилась табличка всего из 3-4 или 5 типов транзисторов, и остальных просто нет в наличии, то можно, наверное, посчитать коэффициент «согласованности» ваших цифр с моей таблицей и, используя его, продолжить свою таблицу, используя цифры из моей таблицы. Думаю, что зависимость «согласованности“ в этой ситуации будет линейной. Для первого времени, наверное хватит, а потом подкорректируете свою таблицу со временем.
На этот прибор я потратил около 3 дней, один из которых покупал некоторую мелочевку, корпус и еще один на настройку и отладку. Остальное работа.

Безусловно, в приборе возможны варианты исполнения: например применение более дешевого стрелочного милливольтметра (необходимо подумать об ограничении хода стрелки вправо при закрытом транзисторе), использовании вместо лампочки еще одного стабилизатора на , применении АКБ, установить дополнительно переключатель для проверки транзисторов с p-каналом и т.д. Но принцип при этом в приборе не изменится.

Еще раз повторюсь, прибор не измеряет величин (цифр) указанных в ДАТАШИТАХ , он делает почти то же самое, но в относительных единицах, сравнивая один образец с другим. Прибор не измеряет характеристик в динамическом режиме, это только статика, как обычным тестером. Но и тестером не все транзисторы поддаются проверке, да и не все параметры можно увидеть. На таких я обычно ставлю маркером знак вопроса "?"

Можно соорудить и проверку в динамике, поставить маленький ШИМ на К176 серии, или что-то подобное.
Но прибор вообще простой и бюджетный, а главное, он привязывает всех испытуемых к одним рамкам.

Сергей (s237)

Украина, Киев

Меня зовут Сергей, проживаю в Киеве, возраст 46 лет. Имею свой автомобиль, свой паяльник, и даже, свое рабочее место на кухне, где ваяю что либо интересное.

Люблю качественную музыку на качественном оборудовании. У меня есть древненький Техникс, на нем все и звучит. Женат, есть взрослые дети.

Бывший военный. Работаю мастером по ремонту и регулировке сварочного, в том числе инверторного, оборудования, стабилизаторов напряжения и многого другого, где присутствует электроника.

Достижений особых не имею, кроме того, что стараюсь быть методичным, последовательным и, по возможности, доводить начатое до конца. Пришел к Вам нетолько взять, но и по возможности - дать, обсудить, поговорить. Вот кратко и все.

Читательское голосование

Статью одобрили 75 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Транзистор – это очень важный элемент большинства радиосхем. Тем, кто решил заняться радиомоделированием, необходимо в первую очередь знать, как их проверять и какие устройства при этом использовать.

В биполярном транзисторе имеется в наличии 2 PN перехода. Выводы из него называют эмиттером, коллектором и базой. Эмиттер и коллектор – это элементы, размещенные по краям, а база находится между ними, посередине. Если рассматривать классическую схему движения тока, то сначала он входит в эмиттер, а затем накапливается в коллекторе. База необходима для того, чтобы регулировать ток в коллекторе.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление , для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход , для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы , в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки .

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку , необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор , то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером , необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Как проверить транзистор, не выпаивая из схемы


Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А - Ж.

Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.

Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.

Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.

Последовательность действий при проверке транзисторов одним из таких приборов, следующая:

  1. Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
  2. Далее проверяется лампа Л1 на размыкание щупов. Л ампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток .
  3. После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
  4. Переключатель устанавливается в положение PNP или NPN, включается питание.

Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);

В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.

Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.

Для проверки нужно последовательно выполнить такие операции:

  1. Подключить к наиболее вероятному выходу базы один из щупов.
  2. Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
  3. Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
  4. Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.

Основные причины неисправности


Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:

  1. Обрыв перехода между составными частями.
  2. Пробой одного из переходов.
  3. Пробой участка коллектора или эмиттера.
  4. Утечка мощности под напряжением цепи.
  5. Видимое повреждение выводов.

Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.

  1. Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
  2. Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
  3. Проводя проверку , следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.

Можно ли проверять полевой транзистор мультиметром? Проверка транзисторов без выпайки из схемы мультиметром

Прибор для проверки любых транзисторов

Это очередная статья, посвященная начинающему радиолюбителю. Проверка работоспособности транзисторов пожалуй самое важно дело, поскольку именно нерабочий транзистор является причиной отказа работы всей схемы. Чаще всего у начинающих любителей электроники возникают проблемы с проверкой полевых транзисторов, а если под рукой нет даже мультиметра, то проверить транзистор на работоспособность очень трудно. Предложенное устройство позволяет за несколько секунд проверить любой транзистор, независимо от типа и проводимости.

Устройство очень простое и состоит из трех компонентов. Основная часть - трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение. Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т. п.) база через базовый резистор 100 ом идет на одну из выводов (левый или правый вывод) трансформатора, средняя точка трансформатора (отвод) подключен к плюсу питания, эмиттер транзистора подключается к минусу питания, а коллектор к свободному выводу первичной обмотки трансформатора.

Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора. Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание. Устройство по идее является простейшим блокинг - генератором. Питание 3,7 - 6 вольт, отлично подойдет всего один литий - ионный аккумулятор от мобильного телефона, но с аккумулятора заранее нужно выпаять плату, поскольку эта плата отключает питание потребление тока превышает 800 мА, а наша схема может в пиках потреблять такой ток. Готовое устройство получается достаточно компактным, можно поместить в компактный пластмассовый корпус, например от конфет типа тик- так и у вас будет карманный прибор для проверки транзисторов на все случаи жизни.

sdelaysam-svoimirukami.ru

ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Сервис мануал

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме - это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото - вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.


Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует - им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы - AKV.

Форум по ремонту

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

radioskot.ru

как проверить транзистор при помощи мультиметра

В этой статье, мы расскажем вам, как проверить транзистор мультиметром. Наверняка многим из вас хорошо известно, что большинство мультиметров имеют в своём арсенале, специальное гнездо, но не в любой ситуации использование гнезда удобно и оптимально. Так для того, чтобы подобрать несколько элементов, имеющим одинаковый коэффициент усиления, использование гнезда вполне оправданно, а для выявления работоспособности транзистора, вполне достаточно воспользоваться тестером.

о транзисторе

Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.

Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления. Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N. На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход. Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.

Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода.

В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.

Проверка работоспособности транзистора

Подключаем на базу транзистора, плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение

Затем минусовым щупом подключаем к выводу эмиттера и измеряем.

Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.

Теперь произведём обратное измерение коллекторного и эмиттерного перехода. Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.

Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует. Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства, при этом во многих случаях можно обойтись и без выпаивания его из платы. Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением. Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.

Признаки неисправного транзистора

Теперь мы знаем, как определить рабочий транзистор, а как проверить транзистор мультиметром и узнать, что он не рабочий? Тут тоже всё достаточно легко и просто. Первая неисправность элемента, выражается в отсутствии падения напряжения или в бесконечном большом сопротивлении, прямого и обратного p-n перехода. То есть, при прозвонке прибор показывает «1». Это обозначает, что измеряемый переход в обрыве и элемент не рабочий. Другая неисправность элемента, выражается в наличии большого падения наряжения на полупроводнике (прибор при этом как правило пищит), или около нулевом значении сопротивления прямого и обратного p-n перехода. В таком случае пробита внутренняя структура элемента (короткозамкнута), и он не рабочий.

Определение цоколевки у транзистора

Теперь давайте научимся определять, где у транзистора находится база, эмиттер и коллектор. В первую очередь начинают искать базу элемента. Для этого включаем мультиметр в режим прозвонки. Положительный щуп закрепляем на левую ножку, а минусовым последовательно производим измерение на средней и правой ножке.

Мультиметр нам показал «1» между левой и средней ножкой, а между левой и правой ножкой показания составили 555 мВ.

Пока эти измерения не дают нам возможности, сделать какие-либо выводы. Двигаемся вперёд. Закрепляемся плюсовым щупом на средней ножке, а минусовым последовательно производим измерение на левой и правой ноге.

Тостер показал значение равное «1» между левой и средней ногой, и 551 мВ, между средней и правой ногой.

Эти измерения, тоже не дают возможности сделать вывод и определить базу. Двигаемся дальше. Закрепляем плюсовой щуп на правой ноге, а минусовым щупом по очереди закрепляем среднюю и левую ногу, при этом производим измерения.

В ходе измерения мы видим, что величина падения напряжения между правой и средней ножкой равна единице, и между правой и левой ножкой тоже равно единице (бесконечность). Таким образом, мы нашли базу транзистора, и она находиться на правой ноге.

Теперь нам осталось определить, на какой ноге коллектор, а на какой эмиттер. Для этого прибор следует переключить в измерение сопротивления 200 кОм. Измеряем на средней и левой ноге, для чего закрепим щуп с минусом на правой ноге(база), а плюсовой по очереди будем закреплять на средней ноге и левой, при этом проводя измерения сопротивления.

Получив измерения мы видим, что на левой ноге R=121,0 кOм, а на средней ноге R=116.4 кOм. Следует запомнить раз и навсегда, если вы будете в дальнейшем проверять и находить эмиттер и коллектор, что сопротивление коллекторного перехода в любых случаях меньше, чем сопротивление эмиттера.

Подведём итоги наших измерений:

  1. Измеряемый нами элемент имеет p-n-p структуру.
  2. Нога базы, расположена справа.
  3. Нога коллектора, расположена в середине.
  4. Нога эмиттера находится слева.

Пробуйте и определяйте работоспособность полупроводниковых элементов, это ведь очень легко!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Вконтакте

Одноклассники

Читайте также:

electrongrad.ru

Проверка биполярного транзистора - Основы электроники

Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.

Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.

Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.

Итак, схематически биполярный транзистор можно представить следующим образом.

Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.

Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).

Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.

Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.

Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).

Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.

Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.

Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер - n-областям. Для начала переведем мультиметр в режим проверки диодов.

В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.

Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.

Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.

По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.

Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.

Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.

Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».

Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.

Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».

Меняем полярность (красный-коллектор, черный- эмиттер) результат – «1».

Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.

Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.

При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.

А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:

www.sxemotehnika.ru

Как проверить транзистор,диод,конденсатор,резистор и др

Как проверить работоспособность радиодеталей

Сбои в работе многих схем иногда случаются не только из-за ошибок в самой схеме,но так же в том что где-то сгоревшая или просто бракованная радиодеталь.

На вопрос как проверить работоспособность радиодетали, во многом нам поможет прибор который есть наверно у каждого радиолюбителя- мультиметр.

Мультиметр позволяет определять напряжение, силу тока, емкость, сопротивление,и многое другое.

Как проверить резистор

Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной схеме.

При проверке подстроечных и переменных резисторов сначала надо проверить величину сопротивления, замерив его между крайними (по схеме) выводами, а затем убедиться в надежности контакта между токопроводящим слоем и ползунком. Для этого надо подключить омметр к среднему выводу и поочередно к каждому из крайних выводов. При вращении оси резистора в крайние положения, изменение сопротивления переменного резистора группы «А» (линейная зависимость от угла поворота оси или положения движка) будет плавным, а резистора группы «Б» или «В» (логарифмическая зависимость) имеет нелинейный характер. Для переменных (подстроечных) резисторов характерны три неисправности: нарушения контакта движка с проводящим слоем; механический износ проводящего слоя с частичным нарушением контакта и изменением величины сопротивления резистора в большую сторону; выгорание проводящего слоя, как правило, у одного из крайних выводов. Некоторые переменные резисторы имеют сдвоенную конструкцию. В этом случае каждый резистор проверяется отдельно. Переменные резисторы, применяемые в регуляторах громкости, иногда имеют отводы от проводящего слоя, предназначенные для подключения цепей тонконпенсации. Для проверки наличия контакта отвода с проводящим слоем омметр подключают к отводу и любому из крайних выводов. Если прибор покажет какую-то часть от общего сопротивления, значит имеется контакт отвода с проводящим слоем. Фоторезисторы проверяются аналогично обычным резисторам, но для них будет два значения сопротивления. Одно до засветки - темновое сопротивление (указывается в справочниках), второе - при засветке любой лампой (оно будет в 10... 150 раз меньше темнового сопротивления).

Как проверить конденсаторы

Простейший способ проверки исправности конденсатора - внешний осмотр, при котором обнаруживаются механические повреждения, например деформация корпуса при перегреве вызванного большим током утечки. Если при внешнем осмотре дефекты не замечены, проводят электрическую проверку.Омметром легко определить один вид неисправности – внутреннее короткое замыкание (пробой). Сложнее дело обстоит с другими видами неисправности конденсаторов: внутренним обрывом, большим током утечки и частичной потерей емкости. Причиной последнего вида неисправности у электролитических конденсаторов бывает высыхание электролита. Многие цифровые тестеры обеспечивают возможность измерения емкости конденсаторов в диапазоне от 2000 пФ до 2000 мкФ. В большинстве случаев этого достаточно. Надо отметить, что электролитические конденсаторы имеют довольно большой разброс допустимого отклонения от номинальной величины емкости. У конденсаторов некоторых типов он достигает- 20%,+80%, то есть, если номинал конденсатора 10мкФ, то фактическая величина его емкости может быть от 8 до 18мкФ.

При отсутствии измерителя емкости конденсатор можно проверить другими способами.Конденсаторы большой емкости (1 мкФ и выше) проверяют омметром. При этом от конденсатора отпаивают детали, если он в схеме и разряжают его. Прибор устанавливают для измерения больших сопротивлений. Электролитические конденсаторы подключают к щупам с соблюдением полярности.Если емкость конденсатора больше 1 мкФ и он исправен, то после присоединения омметра конденсатор заряжается, и стрелка прибора быстро отклоняется в сторону нуля (причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания), потом стрелка медленно возвращается в положение «бесконечность».

При наличии утечки омметр показывает малое сопротивление - сотни и тысячи ом, - величина которого зависит от емкости и типа конденсатора. При пробое конденсатора его сопротивление будет около нуля. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что ток и время заряда конденсатора незначительны.При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.Конденсаторы средней емкости (от 500 пФ до 1 мкФ) можно проверить с помощью последовательно подключенных к выводам конденсатора наушников и источника тока. Если конденсатор исправен, в момент замыкания цепи в головных телефонах слышен щелчок.Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость не уменьшится, значит, обрывов выводов нет.

Как проверить трансформатор, дроссель, катушку индуктивности

Проверка начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Наиболее частая причина выхода из строя трансформаторов (и дросселей) - их пробой или короткое замыкание витков в обмотке или обрыв выводов. Обрыв цепи катушки или наличие замыканий между изолированными по схеме обмотками можно обнаружить при помощи любого тестера. Но если катушка имеет большую индуктивность (т. е. состоит из большого числа витков), то цифровой мультиметр в режиме омметра вас может обмануть (показать бесконечно большое сопротивление, когда цепь все же есть) - для таких измерений «цифровик» не предназначен. В этом случае надежнее аналоговый стрелочный омметр. Если проверяемая цепь есть, это еще не значит, что все в норме. Убедиться в том, что внутри обмотки нет коротких замыканий между слоями, приводящих к перегреву трансформатора, можно по значению индуктивности, сравнив ее с аналогичным изделием. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи. От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Находим резонансную частоту по максимуму напряжения во вторичной цепи. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается - это надо учитывать при проверке:- сетевые питающие 40...60 Гц;- звуковые разделительные 10...20000Гц;- для импульсного блока питания и разделительные.. 13... 100 кГц. Импульсные трансформаторы обычно содержат малое число витков. При самостоятельном изготовлении убедиться в их работоспособности можно путем контроля коэффициента трансформации обмоток. Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах). Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации.

Как проверить диод,фотодиод

Любой стрелочный (аналоговый) омметр позволяет проверить прохождение тока через диод (или фотодиод) в прямом направлении - когда «+» тестера приложен к аноду диода. Обратное включение исправного диода эквивалентно разрыву цепи. Цифровым прибором в режиме омметра проверить переход не удастся. Поэтому у большинства современных цифровых мультиметров есть специальный режим проверки p-n-переходов (на переключателе режимов он отмечен знаком диода). Такие переходы есть не только у диодов, но и фотодиодов, светодиодов, а также транзисторов. В этом режиме «цифровик» работает как источник стабильного тока величиной 1 мА (такой ток проходит через контролируемую цепь) -- что совершенно безопасно. При подключенном контролируемом элементе прибор показывает напряжение на открытом p-n-переходе в милливольтах: для германиевых 200...300 мВ, а для кремниевых 550...700 мВ. Измеренное значение может быть не более 2000 мВ.Однако, если напряжение на щупах мультиметра ниже отпирания диода, диодного или селенового столба, то прямое сопротивление измерить невозможно.

Проверка биполярного транзистора

Некоторые тестеры имеют встроенные измерители коэффициента усиления маломощных транзисторов. Если у вас такого прибора нет, то при помощи обычного тестера в режиме омметра или же цифровым, в режиме проверки диодов, можно проверить исправность транзисторов. Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор исправен, если исправны оба перехода.

Для проверки один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно прикасаются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.

При прозвонке электродов некоторых цифровых или мощных транзисторов следует учитывать, что у них могут внутри быть установлены защитные диоды между эмиттером и коллектором, а также встроенные резисторы в цепи базы или между базой и эмиттером. Не зная этого, элемент по ошибке можно принять за неисправный.

radiostroi.ru

Как проверить транзистор мультиметром в режиме омметра и измерения hFE

Транзистор – полупроводниковый прибор, основное назначение которого – использование в схемах для усиления или генерирования сигналов, а также для электронных ключей.

В отличие от диода, транзистор имеет два p-n-перехода, соединенных последовательно. Между переходами располагаются зоны, имеющие разную проводимость (типа «n» или типа «р»), к которым подключаются выводы для подключения. Вывод от средней зоны называется «базой», а от крайних – «коллектор» и «эмиттер».

Разница между зонами «n» и «p» состоит в том, что у первой есть свободные электроны, а у второй – так называемые «дырки». Физически «дырка» означает нехватку электрона в кристалле. Электроны под действием поля, создаваемого источником напряжения, двигаются от минуса к плюсу, а «дырки» - наоборот. При соединении между собой областей с разной проводимостью электроны и «дырки» диффузируют и на границе соединения образуется область, называемая p-n-переходом. За счет диффузии область «n» оказывается заряженной положительно, а «р» - отрицательно, а между областями с различной проводимостью возникает собственное электрическое поле, сосредоточенное в области p-n-перехода.

При подключении плюсового вывода источника к области «р», а минуса – к «n» его электрическое поле компенсирует собственное поле p-n-перехода, и через него проходит электрический ток. При обратном подключении поле от источника питания складывается с собственным, увеличивая его. Переход запирается, и ток через него не проходит.

В составе транзистора есть два перехода: коллекторный и эмиттерный. Если подключить источник питания только между коллектором и эмиттером, то ток через него не пойдет. Один из переходов оказывается запертым. Чтобы его открыть, на базу подается потенциал. В результате на участке коллектор-эмиттер возникает ток, который в сотни раз больше тока базы. Если при этом ток базы изменяется во времени, то ток эмиттера в точности повторяет его, но с большей амплитудой. Этим и обусловлены усилительные свойства.

В зависимости от комбинации чередования зон проводимости различают транзисторы p-n-p или n-p-n. Транзисторы p-n-p открываются при положительном потенциале на базе, а n-p-n – при отрицательном.

Рассмотрим несколько способов, как проверить транзистор мультиметром.

Проверка транзистора омметром

Поскольку в составе транзистора имеется два p-n-перехода, то их исправность можно проверить по методике, используемой для тестирования полупроводниковых диодов. Для этого его можно представить эквивалентом встречного соединения двух полупроводниковых диодов.

Критериями исправности для них является:

  • Низкое (сотни Ом) сопротивление при подключении источника постоянного тока в прямом направлении;
  • Бесконечно большое сопротивление при подключении источника постоянного тока в обратном направлении.

Мультиметр или тестер измеряют сопротивление, используя собственный вспомогательный источник питания – батарейку. Напряжение ее невелико, но его достаточно, чтобы открыть p-n-переход. Меняя полярность подключения щупов от мультиметра к исправному полупроводниковому диоду, в одном положении мы получаем сопротивление в сотню Ом, а в другом – бесконечно большое.

Полупроводниковый диод бракуется, если

  • в обоих направлениях прибор покажет обрыв или ноль;
  • в обратном направлении прибор покажет любую значащую величину сопротивления, но не бесконечность;
  • показания прибора будут нестабильными.

При проверке транзистора потребуется шесть измерений сопротивлений мультиметром:

  • база-эмиттер прямое;
  • база-коллектор прямое;
  • база-эмиттер обратное;
  • база-коллектор обратное;
  • эмиттер-коллектор прямое;
  • эмиттер-коллектор обратное.

Критерием исправности при измерении сопротивления участка коллектор-эмиттер является обрыв (бесконечность) в обоих направлениях.

Коэффициент усиления транзистора

Различают три схемы подключения транзистора в усилительные каскады:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой.

Все они имеют свои характеристики, а наиболее распространена схема с общим эмиттером. Любой транзистор характеризуется параметром, определяющим его усилительные свойства – коэффициент усиления. Он показывает, во сколько раз ток на выходе схемы будет больше, чем на входе. Для каждой из схем включения имеется свой коэффициент, разный для одного и того же элемента.

В справочниках приводится коэффициент h31э – коэффициент усиления для схемы с общим эмиттером.

Как проверить транзистор, измеряя коэффициент усиления

Одним из методов проверки исправности транзистора является измерение его коэффициента усиления h31э и сравнение его с паспортными данными. В справочниках дается диапазон, в котором может находиться измеренное значение для данного типа полупроводникового прибора. Если измеренное значение укладывается в диапазон, то он исправен.

Измерение коэффициента усиления производится еще и для подбора компонентов с одинаковыми параметрами. Это необходимо для построения некоторых схем усилителей и генераторов.

Для измерения коэффициента h31э мультиметр имеет специальный предел измерения, обозначенный hFE. Буква F обозначает «forward» (прямая полярность), а «Е» - схему с общим эмиттером.

Для подключения транзистора к мультиметру на его передней панели установлен универсальный разъем, контакты которого обозначены буквами «ЕВСЕ». Согласно этой маркировке подключаются выводы транзистора «эмиттер-база-коллектор» или «база-коллектор-эмиттер», в зависимости от их расположения у конкретной детали. Для определения правильного расположения выводов придется воспользоваться справочником, там же заодно можно узнать и коэффициент усиления.

Затем подключаем транзистор к разъему, выбрав предел измерения мультиметра hFE. Если его показания соответствуют справочным – проверяемый электронный компонент исправен. Если нет, или прибор показывает что-то невразумительное – транзистор вышел из строя.

Полевой транзистор

Полевой транзистор отличается от биполярного по принципу действия. Внутрь пластины кристалла одной проводимости («р» или «n») посередине внедряется участок с другой проводимостью, называемый затвором. По краям кристалла подключаются выводы, называемые истоком и стоком. При изменении потенциала на затворе изменяется величина токопроводящего канала между стоком и истоком и ток через него.

Входное сопротивление полевого транзистора очень большое, а вследствие этого он имеет большой коэффициент усиления по напряжению.

Как проверить полевой транзистор

Рассмотрим проверку на примере полевого транзистора с n-каналом. Порядок действий будет таким:

  1. Переводим мультиметр на режим прозвонки диодов.
  2. Плюсовой вывод от мультиметра подключаем к истоку, минусовой – к стоку. Прибор покажет 0,5-0,7 В.
  3. Меняем полярность подключения на противоположную. Прибор покажет обрыв.
  4. Открываем транзистор, подключив минусовой провод к истоку, а плюсовым коснувшись затвора. За счет существования входной емкости элемент остается открытым некоторое время, это свойство и используется для проверки.
  5. Плюсовой провод перемещаем на сток. Мультиметр покажет 0-800 мВ.
  6. Меняем полярность подключения. Показания прибора не должны измениться.
  7. Закрываем полевой транзистор: плюсовой провод к истоку, минусовой – к затвору.
  8. Повторяем пункты 2 и 3, ничего не должно измениться.

voltland.ru

Можно ли проверять полевой транзистор мультиметром?

Это сравнительно новый тип транзисторов, управление которых осуществляется не электрическим током, как в биполярных транзисторах, а электрическим напряжением (полем), о чём и говорит английская аббревиатура MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor или в переводе металл-окисел-полупроводник полевой транзистор), в русской транскрипции этот тип обозначается как МОП (металл-окисел-полупроводник) или МДП (металл-диэлектрик-полупроводник).

Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор (вывод, аналогичный базе у биполярных транзисторов), также у MOSFET имеются выводы сток и исток, аналоги коллектора и эмиттера у биполярных.

Существует и ещё более современный тип IGBT, в русской транскрипции БТИЗ (биполярный транзистор с изолированным затвором), гибридный тип, где МОП (МДП) транзистор с переходом n-типа управляет базой биполярного, и это позволяет использовать преимущества обоих типов: быстродействие, почти как у полевых, и большой электрический ток через биполярный при очень малом падении напряжения на нём при открытом затворе, при очень большом напряжении пробоя и большом входном сопротивлении.

Полевики находят широкое применение в современной жизни, а если говорить о чисто бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерного железа и всевозможных электронных гаджетов до других, более простых, бытовых приборов - стиральных, посудомоечных машин, миксеров, кофемолок, пылесосов, различных осветителей и другого вспомогательного оборудования. Само собой, что-то из всего этого разнообразия иногда выходит из строя и появляется необходимость выявления конкретной неисправности. Сама распространённость этого вида деталей ставит вопрос:

Как проверить полевой транзистор мультиметром?

Перед любой проверкой полевого транзистора нужно разобраться с назначением и маркировкой его выводов:

  • G (gate) - затвор, D (drain) - сток, S (source) - исток

Если маркировки нет или она не читается, придётся найти паспорт (даташип) изделия с указанием назначения каждого вывода, причём выводов может быть не три, а больше, это значит, что выводы объединены между собой внутри.

И также нужно подготовить мультиметр: подключить красный щуп к плюсовому разъёму, соответственно, чёрный к минусу, переключить прибор в режим проверки диодов и коснуться щупами друг друга, мультиметр покажет «0» или «короткое замыкание», разведите щупы, мультиметр покажет «1» или «бесконечное сопротивление цепи» - прибор рабочий. Про исправную батарейку в мультиметре говорить излишне.

Подключение щупов мультиметра указано для проверки n-канального полевого транзистора, описание всех проверок тоже для n-канального типа, но если вдруг попадётся более редкий p-канальный полевик, щупы надо поменять местами. Понятно, что в первую очередь ставится задача оптимизации процесса проверки, чтобы пришлось как можно меньше выпаивать и паять деталей, поэтому посмотреть, как проверить транзистор, не выпаивая, можно на этом видео:

Проверка полевика, не выпаивая

Является предварительной, она может помочь определить, какую деталь нужно проверить точнее и, может быть, заменить.

При прозвонке полевого транзистора, не выпаивая, обязательно отключаем проверяемый прибор от сети и/или блока питания, вынимаем аккумуляторы или батарейки (если они есть) и приступаем к проверке.

  1. Чёрный щуп на D, красный на S, показание мультиметра примерно 500 мВ (милливольт) или больше - скорее исправен, показание 50 мВ вызывает подозрение, когда показание меньше 5 мВ - скорее неисправен.
  2. Чёрный на D, а красный на G: большая разность потенциалов (до1000 мВ и даже выше) - скорее исправен, если мультиметр показывает близко к пункту 1, то это подозрительно, маленькие цифры (50 мВ и меньше), и близко к первому пункту - скорее неисправен.
  3. Чёрный на S, красный на G: около 1000 мВ и выше - скорее исправен, близко к первому пункту - подозрительно, меньше 50 мВ и совпадает с предыдущими показаниями - видимо, полевой транзистор неисправен.

Проверка показала предварительно по всем трём пунктам неисправность? Нужно выпаивать деталь и приступать к следующему действию:

Проверка полевого транзистора мультиметром

Включает в себя подготовку мультиметра (смотри выше). Обязательно снятие статического напряжения с себя и накопленного заряда с полевика, иначе можно просто «убить» вполне себе исправную деталь. Статическое напряжение с себя можно снять, используя антистатический манжет, накопленный заряд снимается закорачиванием всех выводов транзистора.

Прежде всего нужно учитывать, что практически все полевые транзисторы имеют предохранительный диод между истоком и стоком, поэтому проверять начинаем именно с этих выводов.

  1. Красный щуп на S (исток), чёрный на D (сток): показания мультиметра в районе 500 мВ или чуть выше - исправен, чёрный щуп на S, красный на D, показания мультиметра «1» или «бесконечное сопротивление» - шунтирующий диод исправен.
  2. Чёрный на S, красный на G: показания мультиметра «1» или «бесконечное сопротивление», норма, заодно зарядили затвор положительным зарядом, открыли транзистор.
  3. Не убирая чёрного щупа, переносим красный на D, по открытому каналу течёт ток, мультиметр что-то показывает (не «0» и не «1»), меняем щупы местами: показания примерно такие же - норма.
  4. Красный щуп на D, чёрный на G: показания мультиметра «1» или «бесконечное сопротивление» - норма, заодно разрядили затвор, закрыли транзистор.
  5. Красный остаётся на D, чёрный щуп на S, показания мультиметра «1» или «бесконечное сопротивление» - исправен. Меняем щупы местами, показания мультиметра в районе 500 мВ или выше - норма.

Вывод по итогам проверки: пробоев между электродами (выводами) нет, затвор срабатывает от небольшого (меньше 5В) напряжения на щупах мультиметра, транзистор исправен.

Как проверить транзистор не выпаивая из схемы

Электрика в доме своими руками схемы

  • Схемы заземления для частного дома

  • Обозначение на электрической схеме

  • Обозначение на схеме электрической

  • Схемы стабилизаторы тока

  • Понравилось? Лайкни нас на Facebook