Какие способы очистки воды. Какие существуют способы очистки воды. Биологические способы очистки воды

Вода является основой нашей жизни, без нее невозможны никакие процессы в организме. На возникновение более чем половины болезней прямо или косвенно влияет вода плохого качества. Именно поэтому так важно заботиться о вопросах очистки воды . А теперь перейдем к методам очистки. Разберём как стандартные методы, так и относительно новые.

Самыми популярными методами очистки воды являются:

  • механические
  • физико-химические
  • биологические

Механические методы очистки воды

Механические методы очистки воды - одни из самых дешевых. Механическая очистка сточных вод очищает бытовые жидкости от взвешенных частиц на 60-65%, от нерастворимых грубодисперсных элементов на 90-95%.

К механическим методам очистки относятся:

  • Процеживание. Метод процеживания основан на поэтапной фильтрации воды. На первом этапе вода проходит через сетку, задерживающую крупный мусор. Далее вода пропускается через сетку с меньшей длиной ячейки. На последнем этапе размер ячейки сетки минимален, что позволяет задерживать мельчайшие частицы.
  • Отстаивание. Метод используют с целью улучшения качества воды в замкнутых системах водоснабжения. Во время отставания частицы с большей плотностью оседают на дне, в то время как частицы с плотностью меньше, чем плотность воды всплывают на поверхность.
  • Фильтрование. Грязная вода проходя сквозь фильтрующий материал оставляет все ненужные взвеси в фильтре. Выделяют различные виды фильтров. Наиболее распространены: сетчатые, вакуумные. Для активной очистки воды используют центрифуги и гидроциклоны. Мусор в них скапливается на стенках под влиянием центробежной силы.

Физико-химические методы очистки воды

К физико-химическим методам очистки воды относятся:

  • Коагуляция. Метод имеет эффективность до 95%. Начинается очистка воды с того, что в воду добавляются активные коагулянты: Соли аммония, меди, железа. Вредные вещества выпадают в осадок, после чего удаляются без труда. Метод используется на многих предприятиях текстильной, легкой, нефтехимической, целлюлозабумажной, химической и др. Хорошим коагулянтом считается двухвалентное железо FeSО 4 , которое является отходом процесса травления стали. Травильные стоки содержат до 15 % железа. При его использовании очистка по ХПК – до 75%, мутность снижается до 90%, количество фосфора – на 98%, бактерий – до 80%.
  • Адсорбция. При адсорбции адсорбент впитывает в себя все вещества и примеси, не задерживая при этом ток воды. Популярные адсорбенты: уголь, торф, цеолиты, бентонитовые глины . В зависимости от вида используемого адсорбента и удаляемого химического вещества можно достигнуть эффективности до 95%.
  • Флотация. Флотация основана на образовании воздушных пузырьков, которые поднимают примеси вверх. Образуется слой пены, которую легко удалить. Метод действенен при обработке сточных вод от нефтепродуктов, волокнистых частиц, масел и других веществ. Вода после флотации может направляться на внутренние нужды предприятия или подвергаться более тщательной очистки.
  • Экстракция. Используют для удаления со сточных вод органики, которую впоследствии перерабатывают: жирные кислоты, фенолы. Здесь работает физико-химический закон распределения: при активном перемешивании двух нерастворимых жидкостей всякое вещество, растворенное в одной из них, начнет распределяться согласно своей растворимости . После выделения первой жидкости из второй, одна из них будет частично очищена. Когда примеси начинают скапливаться в экстракционном слое, покидая воду, экстракт удаляется. Для эффективности очистки сточную воду подвергают экстракционной очистки несколько раз.
  • Ионный обмен. Иониты твердой фазы и ионы в растворе происходит обмен. Благодаря этому можно забирать из сточных вод нужные радиоактивные вещества и примеси: фосфор, мышьяк, ртуть, свинец и др. Особо результативен ионный обмен при высокой токсичности воды.
  • Диализ. В процессе диализа полупроницаемая мембрана освобождает коллоидные растворы и низкомолекулярные соединения из высокомолекулярных веществ. Низкомолекулярные вещества способны пройти через мембрану. Главный недостаток диализа – долгий период очистки . Для ускорения процесса прибегают к увеличению активной площади и повышают температуру. Диализ объединяет в себе осмос и диффузию.
  • Кристаллизация. Удаление кристаллов примесей. Применяется в водоемах и прудах выпариванием. Возможно только при высоком содержании примесей.

Биологический метод очистки воды

  • Биологические пруды. Такая очистка требует наличие открытых искусственных водоемов. В них происходят самоочистка сточных вод. Такой способ позволяет добиться наилучшего результата, чем при использовании искусственных методов. Наиболее эффективно биологическая очистка работает в теплое время года. В зимнее время очистка не происходит, так как микроорганизмы не способны питаться при минусовой температуре окружающей среды.
  • Аэротенки. При биологической методике происходит за счет взаимодействия активного ила и механически очищенных сточных вод. Активный ил содержит множество аэробных микроорганизмов. Если им создать благоприятные условия, то в процессе своей жизнедеятельности микроорганизмы будут выводить из сточных вод различные загрязнители, и тем самым будет происходить очистка. Биологическое очищение происходит непрерывно, главное, чтобы регулярно поступал свежий воздух. Когда уровень биохимического потребления кислорода (БПК) снижается, вода поступает в следующие секции. В них начинают работать еще одни микроорганизмы - бактерии-нитрификаторы. Часть этих бактерий перерабатывает азот аммонийных солей, в результате получаются нитриты. Далее активный ил превращается в осадок, а очищенная вода поступает в водоемы.
  • Биофильтры. Наиболее распространенной, особенно среди владельцев индивидуальных застроек, является очистка с помощью биофильтра. Биологическая методика очистки происходит с помощью все тех же микроорганизмов, находящихся в биофильтре в виде активной пленки. Производительность биофильтров, имеющих капельную фильтрацию, весьма низкая. Но именно они, обеспечивают наибольшую степень очистки сточных вод. Двухступенчатые биофильтры обладают высокой производительностью, при этом качество несильно отличается от капельной фильтрации. Принцип работы биофильтра схож с процессом очистки с помощью аэротенки. Вначале с помощью механических фильтров и отстойника сточные воды избавляются от взвеси и крупных частиц. Затем вода поступает в тело биофильтра, где и происходит очистка. Бактерии, находящиеся на активной пленке, получают с водой питательные вещества. В процессе поедания органики, бактерии размножаются. В результате разросшаяся колония микроорганизмов очищает сточные воды от всей органики.


Реагентный метод очистки воды

В воду добавляется реагент, который связывает растворенные в воде загрязнения и переводит их в осадок. Метод применяется для удаления из сточных вод растворенных неорганических веществ ионного типа (соли, кислоты, основания), растворенных органических веществ (ПАВ), с переводом последних в нерастворимые комплексы. Эффект очистки достигает 97–98 %.

  • Окисление. К сильным окислителям относятся озон, фтор, кислород, хлор и другие вещества, обладающие большими значениями окислительно-восста­но­ви­тель­ных потенциалов Е. Методы окисления используют для доочистки сточных вод в основном от органических веществ (фенолы, органические кислоты, ПАВ и пр.). При этом продукты окисления – это нетоксичные компоненты: CO 2 ; H 2 O; NH 3 и осколки органических веществ различного строения. При правильном выборе режима окисления и четкого контроля за ним эффект очистки достигает 99 %.
  • Нейтрализация. Реакция обмена между кислотой и основанием, при которой оба соединения теряют свои характерные свойства и происходит образование солей. Реагенты вводятся в виде порошков (известь, кальцинированная сода), водных растворов (NaOH, гашеная известь и др.), газов, активных загрузок фильтров (дробленый мрамор, известняк, доломит).Если на промышленных предприятиях образуются кислые и щелочные стоки, представляется возможной их взаимная нейтрализация путем смешения в регулируемом режиме. Процесс осуществляется в нейтрализаторах (емкости снабжены перемешивающим устройством и дозатором реагентов), чаще с последующим осветлением.
  • Экстракция. Метод очистки, альтернативный сорбции, применяющийся для удаления молекулярных примесей в основном органического характера. В качестве экстрагентов применяются плохо растворимые в воде органические жидкости: сложные эфиры, спирты, ароматические соединения, кетоны.

Мембранный метод очистки воды

Мембраны, как и другие фильтрующие материалы, можно рассматривать как полупроницаемые среды: они пропускают воду, но не пропускают, точнее, хуже пропускают некоторые примеси. Однако если обычное фильтрование применяют для удаления из воды относительно крупных образований – дисперсных и крупных коллоидных примесей, то мембранные технологии – для извлечения мелких коллоидных частиц, а также растворенных соединений. Для этого мембраны должны иметь поры очень малого размера.

Основное отличие мембран от обычных фильтрующих сред состоит в том, что они тонкие, и удаляемые примеси задерживаются не в объеме, а только на поверхности мембраны. Грязеемкость поверхности, очевидно, гораздо меньше, чем у объема. Казалось бы, мембрана должна из-за этого очень быстро засориться и перестать пропускать воду.

Так бы оно и было, если бы в мембранном фильтре не происходило постоянного самоочищения мембраны. Для этого применяется так называемая «тангенциальная» схема движения воды в аппарате, при которой собирают воду с обеих сторон мембраны: одна часть потока проходит через мембрану и образует фильтрат (или пермеат), то есть очищенную воду, а другую направляют вдоль поверхности мембраны, чтобы смывать задержанные примеси и удалять их из зоны фильтрации. Эта часть потока называется концентратом или ретентатом, и обычно ее либо сбрасывают в дренаж, либо (например, при очистке гальванических стоков) отводят для дальнейшей обработки и выделения нужных компонентов.

Таким образом, узел мембранной фильтрации имеет один вход и два выхода, и часть воды постоянно расходуется на очистку мембраны. (В двухступенчатых мембранных установках концентрат второй ступени может быть значительно чище, чем исходная вода, поэтому его можно использовать, подавая снова на вход установки. Таким способом добиваются снижения расхода воды.)

Физико-химические способы очистки воды

Как следует из названия, методы очистки воды данной группы совмещают в себе химическое и физическое воздействие на загрязнители воды. Они достаточно разнообразны и применяются для удаления самых разных веществ. В их числе растворенные газы, тонкодисперсные жидкие или твердые частицы, ионы тяжелых металлов, а также различные вещества в растворенном состоянии. Физико-химические методы могут применяться как на стадии предварительной очистки, так и на поздних этапах для глубокой очистки.

Разнообразие методов данной группы велико, поэтому ниже будут приведены наиболее распространенные из них:

  • флотация;
  • сорбция;
  • экстракция;
  • ионообмен;
  • электродиализ;
  • обратный осмос;
  • термические методы.

Флотация , применительно к водоочистке, представляет собой процесс отделения гидрофобных частиц при пропускании через воду большого числа пузырьков газа (обычно воздуха). Показатели смачиваемости отделяемого загрязнителя таковы, что частицы закрепляются на поверхности раздела фаз пузырьков и вместе с ними поднимаются на поверхность, где образуют слой пены, который может быть легок удален. Если отделяемая частица оказывается больше по размерам чем пузырьки, то вместе они (частица + пузырьки) образуют так называемый флотокомплекс. Нередко флотацию комбинируют с использованием химических реагентов, к примеру, сорбирующихся на частицах загрязнителя, чем достигается снижение его смачиваемости, или являющихся коагулянтами и проводящих к укрупнению удаляемых частиц. Флотацию преимущественно используют для очистки воды от различных нефтепродуктов и масел, но также могут удаляться твердые примеси, отделение которых другими способами неэффективно.

Существуют различные вариант осуществления процесса флотации, ввиду чего выделяют следующие ее типы:

  • пенная;
  • напорная;
  • механическая:
  • пневматическая;
  • электрическая;
  • химическая и т.д.

Приведем в качестве примера принцип работы некоторых из них. Широко используется метод пневматической флотации, при которой образование восходящего потока пузырьков создается за счет установки на дне резервуара аэраторов, обычно представляющих собой перфорированные трубы или пластины. Подаваемый под давлением воздух проходит сквозь отверстия перфорации, за счет чего дробиться на отдельные пузырьки, осуществляющие сам процесс флотации. При напорной флотации поток очищаемой воды смешивается с потоком воды, перенасыщенной газом и находящейся под давлением, и подается в камеру флотации. При резком падении давления растворенный в воде газ начинает выделяться в виде пузырьков малого размера. В случае электрофлотации процесс образования пузырьков протекает на поверхности расположенных в очищаемой воде электродов при протекании по ним электрического тока.

Сорбционные методы основаны на избирательном поглощении загрязняющих веществ в поверхностном слое сорбента (адсорбция) или в его объеме (абсорбция). В частности для очистки воды используется процесс адсорбции, который может носить физический и химический характер. Отличие заключается в способе удержания адсорбируемого загрязнителя: с помощью сил молекулярного взаимодействия (физическая адсорбция) или благодаря образованию химических связей (химическая адсорбция или хемосорбция). Методы данной группы способны достичь большой эффективности и убирать из воды даже малые концентрации загрязнителей при больших ее расходах, что делает их предпочтительными в качестве методов доочистки на завершающих стадиях процесса водоочистки и водоподготовки. Сорбционными методами могут удаляться различные гербициды и пестициды, фенолы, поверхностно активные вещества и т.д.

В качестве адсорбентов используются такие вещества как активированные угли, силикагели, алюмогели и цеолиты. Их структура делается пористой, что значительно увеличивает удельную площадь адсорбента, приходящуюся на единицу его объема, из-за чего достигается большая эффективность процесса. Сам процесс адсорбционной очистки может быть осуществлен путем смешения очищаемой воды и адсорбента, или же путем фильтрации воды через слой адсорбента. В зависимости от сорбирующего материала и извлекаемого загрязнителя процесс может быть регенеративным (адсорбент после регенерации используется вновь) или деструктивны, когда адсорбент подлежит утилизации ввиду невозможности его регенерации.

Очистка воды методом жидкостной экстракции заключается в использовании экстрагентов. Применительно к очистке воды, эктсрагент - это несмешиваемая или мало смешиваемая с водой жидкость, значительно лучше растворяющая в себе извлекаемые из воды загрязнители. Процесс осуществляется следующим образом: очищаемая вода и эктрагент перемешиваются для развития большой поверхности контакта фаз, после чего в них происходит перераспределение растворенных загрязняющих веществ, большая часть которых переходит в экстрагент, затем две фазы разделяются. Насыщенный извлекаемыми загрязнителями экстрагент называется экстрактом, а очищенная вода - рафинатом. Далее экстрагент может быть утилизирован или регенерирован в зависимости от условий процесса. Данным методом из воды удаляются преимущественно органические соединения, такие как фенолы и органические кислоты. Если экстрагируемое вещество представляет определенную ценность, то после регенерации экстрагента оно вместо утилизации может быть с пользой использовано для других целей. Данный факт способствует применению экстракционного метода очистки к сточным водам предприятий для извлечения и последующего использования или возврата в производство ряда веществ, теряемых со стоками.

Ионный обмен в основном используется в водоподготовке с целью умягчения воды, то есть изъятия солей жесткости. Суть процесса заключается в обмене ионами между водой и специальным материалом, называемым ионитом. Иониты подразделяются на катиониты и аниониты в зависимости от типа обмениваемых ионов. С химической точки зрения ионит представляет собой высокомолекулярное вещество, состоящее из каркаса (матрицы) с большим количеством функциональных групп, способных к ионообмену. Существуют природные иониты, такие как цеолиты и сульфоугли, которые применялись на ранних этапах развития ионообменной очистки, но в настоящее время широкое распространение получили искусственные ионообменные смолы, значительно превосходящие свои природные аналоги по ионообменной способности. Метод очистки ионным обменом получил широкое распространение, как в промышленности, так и в быту. Бытовые ионообменные фильтры, как правило, не используются для работы с сильнозагрязненными водами, поэтому ресурса одного фильтра хватает на очистку большого количества воды, после чего фильтр подлежит утилизации. В то же время при водоподготовке ионообменный материал чаще всего подлежит регенерации с помощью растворов с большим содержанием ионов H + или OH -- .

Электродиализ представляет собой комплексный метод, сочетающий мембранный и электрический процессы. С его помощью можно удалять из воды различные ионы и проводить обессоливание. В отличие от обычных мембранных процессов, в электродиализе используются специальные ионоселективные мембраны, пропускающие ионы только определенного знака. Аппарат для проведения электродиализа называется электродиализатором и представляет собой ряд камер, разделенных чередующимися катионообменными и анионообменными мембранами, в которые поступает очищаемая вода. В крайних камерах расположены электроды, к которым подводится постоянный ток. Под действием возникшего электрического поля ионы начинаются двигаться к электродам согласно своему заряду, пока не встречают ионоселективную мембрану с совпадающим зарядом. Это приводит к тому, что в одних камерах происходит постоянный отток ионов (камеры обессоливания), а в других, наоборот, наблюдается их накопление (камера концентрирования). Разводя потоки из разных камер можно получить концентрированный и обессоленный растворы. Неоспоримые преимущества данного метода заключаются не только в очищении воды от ионов, но и в получении концентрированных растворов отделяемого вещества, что позволяет возвращать его назад в производство. Это делает электродиализ особенно востребованным на различных химических предприятиях, где вместе со стоками теряется часть ценных компонентов, и применение данного метода удешевляется за счет получения концентрата.

Дополнительная информация по электродиализу

Обратный осмос относится к мембранным процессам и проводится под давлением больше осмотического. Осмотическое давление - избыточное гидростатическое давление, приложенное к раствору, отделенному полупроницаемой перегородкой (мембраной) от чистого растворителя, при котором прекращается диффузия чистого растворителя через мембрану в раствор. Соответственно, при рабочем давлении выше осмотического будет наблюдаться обратный переход растворителя из раствора, за счет чего концентрация растворенного вещества будет расти. Таким способом можно отделять растворенные газы, соли (включая соли жесткости), коллоидные частицы, а также бактерии и вирусы. Также установки обратного осмоса выделяются тем, что используются для получения пресной воды из морской. Данный тип очистки с успехом используется как в бытовых условиях, так и при обработке сточных вод и водоподготовке.

Дополнительная информация по обратному осмосу и системам обратного осмоса


Термические методы основаны на воздействии на очищаемую воду повышенных или пониженных температур. Одним из наиболее энергоемких процессов является выпаривание, однако оно позволяет получить воду высокой степени чистоты и высококонцентрированный раствор с нелетучими загрязнителями. Также концентрирование примесей может осуществляться с помощью вымораживания, поскольку в первую очередь начинает кристаллизоваться чистая вода, и лишь затем оставшаяся ее часть с растворенными загрязнителями. Выпариванием, как и вымораживанием, можно проводить кристаллизацию - выделение примесей в виде выпадающих в осадок кристаллов из насыщенного раствора. В качестве экстремального метода используется термическое окисление, когда очищаемая вода распыляется и подвергается воздействию высокотемпературных продуктов сгорания топлива. Данный метод используется для нейтрализации высокотоксичных или трудно разлагаемых загрязнителей.

Понравилось? Лайкни нас на Facebook